Certified Abstract Machines for Skeletal Semantics
CPP 2022

Guillaume Ambal, Serguei Lenglet, Alan Schmitt

January 17, 2022

Guillaume Ambal Certified AM for Skeletal Semantics

How to define a language?

Defining a Language on Paper
Example: Call-by-Value A-calculus

Variables x €V
Term tu= x|tt]|Ax.t

Closure ¢ = (x,t,s)
Environment s := [(x1— c1),..., (xn —)]
s(x)=c¢
s,xc s, .t (x,t,s)

s,t1 d (x,t,8") s, ¢ (s +{x—'}),tdc
s, (t]_ t2) U Cc

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 2/13

Defining a Language with a Computer

In a proof assistant, from scratch In a convenient Framework
» Coq » Ott, Lem
» Isabelle/HOL > K
> Agda, Twelf, ... » Skeletal Semantics

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022

3/13

Skeletal Semantics

Skeletal Semantics

» Recent framework (first definition: POPL 2019)
> Meta-language (Skel) to define programming languages

> Toolbox to manipulate semantics: Necro.

A-calculus
Debugger

JavaScript
Interpreter
BrainFuck

i

Coq

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 4/13

Skeletal Semantics

Skeletal Semantics for CbV \-calculus

type ident

type lterm =
| Lam (ident, lterm)
| Var ident
| App (lterm, lterm)

type clos =
| Clos (ident, lterm, env)

type env

(env,ident,clos) — env
(ident,env) — clos

term extEnv:
term getEnv:

Guillaume Ambal Certified AM for Skeletal Semantics

term eval (s:env) (l:1lterm): clos

branch
let Lam (x, t) = 1 in
Clos (x, t, s)

or
let Var x =
getEnv (x, s)

or
let App (t1, t2) =1 in
let Clos (x, t, s') =
let w = eval s t2 in
let s'' = extEnv (s', x, w) in
eval s'' t

1 in

end

January 17, 2022

eval s tl1 in

5/13

Skeletal Semantics for CbV \-calculus

type ident Unspecified Types

type lterm =
| Lam (ident, lterm)
| Var ident
| App (lterm, lterm)

We do not explicit what the
elements look like.

type clos =
| Clos (ident, lterm, env) E.g., there exist variables.

type env

term extEnv: (env,ident,clos) — env
term getEnv: (ident,env) — clos

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 5/13

Skeletal Semantics

Skeletal Semantics for CbV \-calculus

type ident

type lterm =

| Lam (ident, lterm)
| Var ident

| App (1term, lterm)

type clos =
| Clos (ident, lterm, env)

type env

(env,ident,clos) — env
(ident,env) — clos

term extEnv:
term getEnv:

Guillaume Ambal Certified AM for Skeletal Semantics

Specified Types

Defined as algebraic data-types with
constructors.

January 17, 2022 5/13

Skeletal Semantics

Skeletal Semantics for CbV \-calculus

type ident

type lterm =
| Lam (ident, lterm)
| Var ident
| App (lterm, lterm)

type clos =
| Clos (ident, lterm, env)

type env

(env,ident,clos) —> env
(ident,env) — clos

term extEnv:
term getEnv:

Guillaume Ambal Certified AM for Skeletal Semantics

Unspecified Terms

For when the actual implementation
is not important.

E.g., we can extend an environment,
and we can read the mapping of a
variable.

January 17, 2022 5/13

Skeletal Semantics

Skeletal Semantics for CbV \-calculus

Specified Term term eval (s:env) (1l:lterm): clos =
branch

let Lam (x, t) =1 in

Clos (x, t, s)

Evaluation functions we want to
or

describe. let Var x = 1 in
getEnv (x, s)
or
There are associated with a given let App (t1, t2) =1 in
definition. let Clos (x, t, s') = eval s t1 in
let w = eval s t2 in
let s'' = extEnv (s', x, w) in
eval s'' t
end

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 5/13

Skeletal Semantics

Skeletal Semantics for CbV \-calculus

term eval (s:env) (l:lterm): clos =
branch
let Lam (x, t) =1 in
Construction of the meta-language OICIOS (x, €. &)
to list several possible behaviors. let Var x = 1 in
getEnv (x, s)
or
let App (t1, t2) =1 in
let Clos (x, t, s') = eval s t1 in
let w = eval s t2 in

Branching

Can be used to represent
pattern-machings (like here),

COﬂdItIO.néTl statements, let s'' = extEnv (s', x, w) in
non-deterministic choices, etc. eval s'' t
end

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 5/13

Skeletal Semantics

Skeletal Semantics for CbV \-calculus

type ident

type lterm =
| Lam (ident, lterm)
| Var ident
| App (lterm, lterm)

type clos =
| Clos (ident, lterm, env)

type env

(env,ident,clos) — env
(ident,env) — clos

term extEnv:
term getEnv:

Guillaume Ambal Certified AM for Skeletal Semantics

term eval (s:env) (l:1lterm): clos

branch
let Lam (x, t) = 1 in
Clos (x, t, s)

or
let Var x =
getEnv (x, s)

or
let App (t1, t2) =1 in
let Clos (x, t, s') =
let w = eval s t2 in
let s'' = extEnv (s', x, w) in
eval s'' t

1 in

end

January 17, 2022

eval s tl1 in

5/13

Skeletal Semantics

Syntax of Skel
Identifier x €V
Term tu=x|Ct|(t,...,t)| Ap.S
Skeleton S:=tygt;...tp|1let p=5; in S,
| Branching(S,...,S) | t
Pattern p:= _| x| Cp]|(p,...,p)

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022

6/13

Semantics of Skel?

Main semantics of Skel is Big-Step.

Wish for a different format of semantics: Abstract Machines.
Notably, would like an executable semantics.

For this, known technique by Danvy et al.:
» CPS Transform

» Defunctionalization

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022

7/13

Abstract Machines

Non-Deterministic Abstract Machine

(Branching(/), X, k)sk = (S, X, k)sk for (S e€)

(let p=51 in 5, %, K)ek = (S1,%, [let p=0 in S, %X | it K)ek

e = e
([let p=0in S, %] ik, r)k — (p,r, X, [5,0] = K)pat
<[5’DJ - K7Z>k — <Saza’€>sk

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022

8/13

Abstract Machines

Non-Deterministic Abstract Machine

(Branching(/), X, k)sk = (S, X, k)sk for (S e€)

(let p=51 in 5, %, K)ek = (S1,%, [let p=0 in S, %X | it K)ek

B A
([let p=0in S, %] ik, r)k — (p,r, X, [5,0] = K)pat
<’_5’DJ - K7Z>k — <Saza’€>sk

Problem: still non-deterministic, so not really computable...
Next: deterministic AM, with backtracking.

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022

8/13

Abstract Machines

Deterministic Abstract Machine

(Branching(S :: 1), X, k, f)sk — (S, X, K, [[Branching(/), X, k|| :: f)sk
(Branching([]), X, k, f)sk — ()
(let p=351 in S, %, kK,)k — (51, %, [let p=0 in 53, X i1 k, ek
cey
([let p=0in S,X| ik, r,flk = (p,r,X,[S,0] it k, f)pat

([S,0] -k, X, FY = (S, 2, K, ek
ey

(IS, X, k) = s — (S, X, K, Fsk

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 9/13

Coq Formalization

Equivalence Certification

Definitions in Coq:
> Big-Step semantics already defined
» We define the Non-Deterministic Abstract Machine
Inductive step: state -> state -> Prop
> We define the Deterministic Abstract Machine
Definition step (a: state) : option state

Certification:
» We prove Big-Step and NDAM are equivalent (standard proof)

> We prove AM is sound w.r.t. NDAM

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 10/13

AM = NDAM

AM

— r
let x = S in branching

— .

NDAM

Guillaume Ambal Certified AM for Skeletal Semantics

Certified Interpreter

Now we have different semantics for Skel:

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 12/13

Certified Interpreter

Now we have different semantics for Skel:

For the user, we can produce a certified interpreter:

Skel
extraction

M I Certified
nterpreter

Interpreter

Coq

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 12/13

Conclusion

Meta-language |
(Skel) |

Previous works New
|
m NDAM
|
Big-Step semantics | W

w generic certified

Danvy‘ AM interpreter

Coq _ extraction OCaml import certified

g ———————————————> _
skeletal specif. | module interpreter
semantics OCaml :

|

interpreter

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 13/13

	How to define a language?
	Skeletal Semantics
	Overview
	Abstract Machines
	Coq Formalization
	Certified Interpreter
	Conclusion

