
Certified Abstract Machines for Skeletal Semantics
CPP 2022

Guillaume Ambal, Serguëı Lenglet, Alan Schmitt

January 17, 2022

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 1 / 13

How to define a language?

Defining a Language on Paper
Example: Call-by-Value λ-calculus

Variables x ∈ V
Term t ::= x | t t | λx .t

Closure c ::= (x , t, s)

Environment s ::= [(x1 7→ c1), . . . , (xn 7→ cn)]

s(x) = c

s, x ⇓ c s, λx .t ⇓ (x , t, s)

s, t1 ⇓ (x , t, s ′) s, t2 ⇓ c ′ (s ′ + {x 7→ c ′}), t ⇓ c

s, (t1 t2) ⇓ c

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 2 / 13

How to define a language?

Defining a Language with a Computer

In a proof assistant, from scratch

▶ Coq

▶ Isabelle/HOL

▶ Agda, Twelf, . . .

In a convenient Framework

▶ Ott, Lem

▶ K
▶ Skeletal Semantics

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 3 / 13

Skeletal Semantics

Skeletal Semantics

▶ Recent framework (first definition: POPL 2019)

▶ Meta-language (Skel) to define programming languages

▶ Toolbox to manipulate semantics: Necro.

λ-calculus

JavaScript

BrainFuck

Skel

...

Debugger

Interpreter

Coq

N
E
C
R
O

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 4 / 13

Skeletal Semantics

Skeletal Semantics for CbV λ-calculus

type ident

type lterm =

| Lam (ident, lterm)

| Var ident

| App (lterm, lterm)

type clos =

| Clos (ident, lterm, env)

type env

term extEnv: (env,ident,clos) → env

term getEnv: (ident,env) → clos

term eval (s:env) (l:lterm): clos =

branch

let Lam (x, t) = l in

Clos (x, t, s)

or

let Var x = l in

getEnv (x, s)

or

let App (t1, t2) = l in

let Clos (x, t, s') = eval s t1 in

let w = eval s t2 in

let s'' = extEnv (s', x, w) in

eval s'' t

end

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 5 / 13

Skeletal Semantics

Skeletal Semantics for CbV λ-calculus

type ident

type lterm =

| Lam (ident, lterm)

| Var ident

| App (lterm, lterm)

type clos =

| Clos (ident, lterm, env)

type env

term extEnv: (env,ident,clos) → env

term getEnv: (ident,env) → clos

Unspecified Types

We do not explicit what the
elements look like.

E.g., there exist variables.

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 5 / 13

Skeletal Semantics

Skeletal Semantics for CbV λ-calculus

type ident

type lterm =

| Lam (ident, lterm)

| Var ident

| App (lterm, lterm)

type clos =

| Clos (ident, lterm, env)

type env

term extEnv: (env,ident,clos) → env

term getEnv: (ident,env) → clos

Specified Types

Defined as algebraic data-types with
constructors.

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 5 / 13

Skeletal Semantics

Skeletal Semantics for CbV λ-calculus

type ident

type lterm =

| Lam (ident, lterm)

| Var ident

| App (lterm, lterm)

type clos =

| Clos (ident, lterm, env)

type env

term extEnv: (env,ident,clos) → env

term getEnv: (ident,env) → clos

Unspecified Terms

For when the actual implementation
is not important.

E.g., we can extend an environment,
and we can read the mapping of a

variable.

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 5 / 13

Skeletal Semantics

Skeletal Semantics for CbV λ-calculus

Specified Term

Evaluation functions we want to
describe.

There are associated with a given
definition.

term eval (s:env) (l:lterm): clos =

branch

let Lam (x, t) = l in

Clos (x, t, s)

or

let Var x = l in

getEnv (x, s)

or

let App (t1, t2) = l in

let Clos (x, t, s') = eval s t1 in

let w = eval s t2 in

let s'' = extEnv (s', x, w) in

eval s'' t

end

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 5 / 13

Skeletal Semantics

Skeletal Semantics for CbV λ-calculus

Branching

Construction of the meta-language
to list several possible behaviors.

Can be used to represent
pattern-machings (like here),

conditional statements,
non-deterministic choices, etc.

term eval (s:env) (l:lterm): clos =

branch

let Lam (x, t) = l in

Clos (x, t, s)

or

let Var x = l in

getEnv (x, s)

or

let App (t1, t2) = l in

let Clos (x, t, s') = eval s t1 in

let w = eval s t2 in

let s'' = extEnv (s', x, w) in

eval s'' t

end

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 5 / 13

Skeletal Semantics

Skeletal Semantics for CbV λ-calculus

type ident

type lterm =

| Lam (ident, lterm)

| Var ident

| App (lterm, lterm)

type clos =

| Clos (ident, lterm, env)

type env

term extEnv: (env,ident,clos) → env

term getEnv: (ident,env) → clos

term eval (s:env) (l:lterm): clos =

branch

let Lam (x, t) = l in

Clos (x, t, s)

or

let Var x = l in

getEnv (x, s)

or

let App (t1, t2) = l in

let Clos (x, t, s') = eval s t1 in

let w = eval s t2 in

let s'' = extEnv (s', x, w) in

eval s'' t

end

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 5 / 13

Skeletal Semantics

Syntax of Skel

Identifier x ∈ V
Term t ::= x | C t | (t, . . . , t) | λp.S

Skeleton S ::= t0 t1 . . . tn | let p = S1 in S2

| Branching(S , . . . ,S) | t
Pattern p ::= | x | C p | (p, . . . , p)

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 6 / 13

Overview

Semantics of Skel?

Main semantics of Skel is Big-Step.

Wish for a different format of semantics: Abstract Machines.
Notably, would like an executable semantics.

For this, known technique by Danvy et al.:

▶ CPS Transform

▶ Defunctionalization

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 7 / 13

Abstract Machines

Non-Deterministic Abstract Machine

⟨Branching(l),Σ, κ⟩sk → ⟨S ,Σ, κ⟩sk for (S ∈ l)

⟨let p = S1 in S2,Σ, κ⟩sk → ⟨S1,Σ, ⌈let p = □ in S2,Σ⌋ :: κ⟩sk
· · · → · · ·

⟨⌈let p = □ in S ,Σ⌋ :: κ, r⟩k → ⟨p, r ,Σ, ⌈S , □⌋ :: κ⟩pat
⟨⌈S , □⌋ :: κ,Σ⟩k → ⟨S ,Σ, κ⟩sk

Problem: still non-deterministic, so not really computable...
Next: deterministic AM, with backtracking.

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 8 / 13

Abstract Machines

Non-Deterministic Abstract Machine

⟨Branching(l),Σ, κ⟩sk → ⟨S ,Σ, κ⟩sk for (S ∈ l)

⟨let p = S1 in S2,Σ, κ⟩sk → ⟨S1,Σ, ⌈let p = □ in S2,Σ⌋ :: κ⟩sk
· · · → · · ·

⟨⌈let p = □ in S ,Σ⌋ :: κ, r⟩k → ⟨p, r ,Σ, ⌈S , □⌋ :: κ⟩pat
⟨⌈S , □⌋ :: κ,Σ⟩k → ⟨S ,Σ, κ⟩sk

Problem: still non-deterministic, so not really computable...
Next: deterministic AM, with backtracking.

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 8 / 13

Abstract Machines

Deterministic Abstract Machine

⟨Branching(S :: l),Σ, κ, f ⟩sk → ⟨S ,Σ, κ,VBranching(l),Σ, κU :: f ⟩sk
⟨Branching([]),Σ, κ, f ⟩sk → ⟨f ⟩fk

⟨let p = S1 in S2,Σ, κ, f ⟩sk → ⟨S1,Σ, ⌈let p = □ in S2,Σ⌋ :: κ, f ⟩sk
· · · → · · ·

⟨⌈let p = □ in S ,Σ⌋ :: κ, r , f ⟩k → ⟨p, r ,Σ, ⌈S , □⌋ :: κ, f ⟩pat
⟨⌈S , □⌋ :: κ,Σ, f ⟩k → ⟨S ,Σ, κ, f ⟩sk

· · · → · · ·
⟨VS ,Σ, κU :: f ⟩fk → ⟨S ,Σ, κ, f ⟩sk

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 9 / 13

Coq Formalization

Equivalence Certification

Definitions in Coq:

▶ Big-Step semantics already defined

▶ We define the Non-Deterministic Abstract Machine

Inductive step: state -> state -> Prop

▶ We define the Deterministic Abstract Machine

Definition step (a: state) : option state

Certification:

▶ We prove Big-Step and NDAM are equivalent (standard proof)

▶ We prove AM is sound w.r.t. NDAM

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 10 / 13

Coq Formalization

AM ⇒ NDAM

let x = S in branching

let y = S1 in S1’

let z = S2 in S2’

S3

end; ...

AM

NDAM

r

r

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 11 / 13

Certified Interpreter

Certified Interpreter

Now we have different semantics for Skel:

BigStep.v NDAM.v AM.v AM.ml
extraction

For the user, we can produce a certified interpreter:

λ-calculus

JavaScript
Skel

...

Interpreter

Coq

extraction

AM.ml
Certified
Interpreter

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 12 / 13

Certified Interpreter

Certified Interpreter

Now we have different semantics for Skel:

BigStep.v NDAM.v AM.v AM.ml
extraction

For the user, we can produce a certified interpreter:

λ-calculus

JavaScript
Skel

...

Interpreter

Coq

extraction

AM.ml
Certified
Interpreter

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 12 / 13

Conclusion

Previous works New

Meta-language
(Skel) NDAM

AM

User language
(e.g., λ-calculus)

Coq
specif.

Big-Step semantics

Danvy

Danvy

generic certified
interpreter

extraction

skeletal
semantics OCaml

interpreter

OCaml
module

extraction certified
interpreter

import

Guillaume Ambal Certified AM for Skeletal Semantics January 17, 2022 13 / 13

	How to define a language?
	Skeletal Semantics
	Overview
	Abstract Machines
	Coq Formalization
	Certified Interpreter
	Conclusion

