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RDMATSO [OOPSLA 24]

Two nodes, one thread

x = 0 z = 0

z̃ := x
x := 1

z = 0 ✓ z = 1?

Can the output be z = 1?
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RDMATSO [OOPSLA 24]

Two nodes, one thread

x = 0 z = 0

z̃ := x
x := 1

z = 0 ✓ z = 1 ✓

Can the output be z = 1?

Yes! like this:
CPU offloads “z̃ := x” to the NIC
CPU executes “x := 1”
NIC picks up “z̃ := x” and reads 1
...
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RDMATSO [OOPSLA 24]

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

x = 0 z = 0

z̃ := x
Poll()
x := 1

z = 1 ✗

Can prevent this!
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RDMATSO [OOPSLA 24]

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

x = 0 z = 0

z̃ := x
Poll()
x := 1

z = 1 ✗

x = 0 z = 0
...

z̃ := x
Poll()
x := 1

z = 1 ✓

Can prevent this!

But it’s context-dependent...
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Problems and Contributions

Problems with current RDMA programs:
Low-level non-modular code (no libraries)
No formalisation or verification

Our contributions:
Generalised RDMATSO to RDMAWAIT as a modular alternative
LOCO: High-performance Modular RDMA Libraries
Mowgli: Framework for Libraries in (very) weak settings such as RDMA
Local soundness result for simpler verification
Specified and verified a large fragment of LOCO using Mowgli
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LOCO: Overview

LOCO (Library of Composable Objects)

One manager thread talks to the hardware
⇒ RDMAWAIT (context independent code)

Tower of libraries, allowing programming
RDMA similarly to shared-memory

RDMATSO

RDMAWAIT

broadcast

barrier ring buffer

mixed-size
writes

key-value store

atomic
vars

queue locks

LOCO
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LOCO: High-Performance Libraries

Broadcast Benchmark
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Specification: Ring Buffer Library
Example 1: Ring Buffer (single-writer-multiple-reader, FIFO)

Send: Loc × Val → () and Recv: Loc → Val ∪ {⊥}

Send(x ,7) || Recv(x) //output?

Send(x ,7) || Recv(x) //7 or Send(x ,7) || Recv(x) //⊥

Ring Buffer library spec (wishlist, first draft, version 0)
Syntax (Send, Recv)
Behaviour constraints (e.g. FIFO)
Synchronisation dependencies (−→)
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Specification: Barrier Library
Example 2: Barrier library

Barr : Loc → ()

...
Barr(b)

...
Barr(b)

...

...
Barr(b)

...
Barr(b)

...

Barrier library specification (wishlist, first draft, version 0)
Syntax (Barr)
Behaviour constraints (e.g. used same number of times by each thread)
Synchronisation dependencies (−→)
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Specification: Barrier Library
Example 2: Barrier library

Thread synchronisation:

All threads reach the barrier before any
can continue past.

Barr : Loc → ()

...
Barr(b)

...
Barr(b)

...

...
Barr(b)

...
Barr(b)

...

Barrier library specification (wishlist, first draft, version 0)
Syntax (Barr)
Behaviour constraints (e.g. used same number of times by each thread)
Synchronisation dependencies (−→)
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Execution

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

A global execution is allowed if it:
respects the semantics of every library
doesn’t create dependency cycles

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 9 / 16



Execution

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

A global execution is allowed if it:
respects the semantics of every library
doesn’t create dependency cycles

Send(x ,7)

Barr(b) Barr(b)

Recv(x) : ⊥

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 9 / 16



Execution

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

A global execution is allowed if it:
respects the semantics of every library
doesn’t create dependency cycles

Send(x ,7)

Barr(b) Barr(b)

Recv(x) : ⊥

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 9 / 16



Execution (First Try)

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

A global execution is allowed if it:
respects the semantics of every library
doesn’t create dependency cycles

Send(x ,7)

Barr(b) Barr(b)

Recv(x) : ⊥

???

???
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Program Order Dependencies???

Remember the first example:

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

Program order is not always respected...

When is it respected?
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Stamp ordering for RDMA

Previous documented hardware (re)orderings:

Second Stamp

Ordered?
single families

1 2 3 4 5 6 7 8 9 10 11
aCR aCW aCAS aMF aWT aNLRn aNRWn aNRRn aNLWn aRFn aGFn

Fi
rs

tS
ta

m
p

si
ng

le

A aCR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B aCW ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

C aCAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D aMF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E aWT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

fa
m

ili
es

F aNLRn ✗ ✗ ✗ ✗ ✗ SN SN SN SN SN SN
G aNRWn ✗ ✗ ✗ ✗ ✗ ✗ SN SN SN ✗ SN
H aNRRn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ SN SN SN
I aNLWn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ SN ✗ SN
J aRFn ✗ ✗ ✗ ✗ ✗ SN SN SN SN SN SN
K aGFn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 stamps (categories of operations) define when ordering is preserved.
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Program Order Dependencies

Remember the first example:

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

Program order is not always respected...

Reorderings for (independent) libraries?

Mowgli solution:
Use hardware behaviours as
categories (stamps).
Libraries specify the effects of each
function.

Mowgli Ring Buffer library specification
like before: syntax, semantics, −→
Send is in the “NIC write” category
Recv is in the “CPU read” category

Mowgli Barrier library specification
like before: syntax, semantics, −→
Barr has Fence and Read behaviours
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Mowgli Execution (Fixed)

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

like before: syntax, semantics, −→
Send has a NIC write behaviour
Recv has a CPU read behaviour

like before: syntax, semantics, −→
Barr has Fence and Read behaviours
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Verifying Library Implementations

RDMATSO

RDMAWAIT

broadcast

barrier ring buffer

mixed-size
writes

key-value store

atomic
vars

queue locks

LOCO

Libraries can be implemented using other
libraries

Programs can use a set Λ of libraries

Inlining an implementation I (of library L)
should be fine
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Implementation Soundness

How do we prove correct an implementation I for a library L?

Soundness [general, hard to show]:
Outcomes of the implementation are valid, in all contexts:
∀Λ,P. outcomeΛ(I(P)) ⊆ outcomeΛ⊎{L}(P)

Local soundness [library specific, easier to show]:
Promises of the library specification are kept (formal definition is a bit technical).
Considers I and L in isolation.

Mowgli Locality Theorem:
Local soundness implies soundness.

Programmers prove local soundness, Mowgli gives soundness for free.
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Conclusion

Summary:
Generalised RDMATSO to RDMAWAIT as a modular alternative
LOCO: High-performance Modular RDMA Libraries
Mowgli: Framework for Libraries in (very) weak settings such as RDMA
Local soundness result for simpler verification
Specified and verified a large fragment of LOCO using Mowgli

Next: extension to RDMA Atomic operations (ESOP 2026)

Thanks for listening!
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Poll vs Wait Semantics
Base RDMA (RDMATSO):

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

x = 0 z = 0

z̃ := x
Poll()
x := 1

z = 1 ✗

x = 0 z = 0
...

z̃ := x
Poll()
x := 1

z = 1 ✓

LOCO (RDMAWAIT):
x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

x = 0 z = 0

z̃ :=d x
Wait(d)
x := 1

z = 1 ✗

x = 0 z = 0
...

z̃ :=d x
Wait(d)
x := 1

z = 1 ✗
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