
A Verified High-Performance Composable Object Library for
Remote Direct Memory Access

POPL 2026

Guillaume Ambal1, George Hodgkins2, Mark Madler2, Gregory Chockler3,
Brijesh Dongol3, Joseph Izraelevitz2, Azalea Raad1, Viktor Vafeiadis4

1Imperial College London, 2University of Colorado, Boulder, 3University of Surrey, 4MPI-SWS

January 16, 2026

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 1 / 16

Remote Direct Memory Access (RDMA)

CPU

Memory

Sound
Card

GPU . . . NIC . . .

DMA

RDMA: Data-transfer protocol for High-Performance Computing
Low Latency: ∼ µs

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 2 / 16

Remote Direct Memory Access (RDMA)

CPU

Memory

Sound
Card

GPU . . . NIC

RDMA

NIC

Memory

RDMA: Data-transfer protocol for High-Performance Computing
Low Latency: ∼ µs

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 2 / 16

RDMATSO [OOPSLA 24]

Two nodes, one thread

x = 0 z = 0

z̃ := x
x := 1

z = 0 ✓ z = 1?

Can the output be z = 1?

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 3 / 16

RDMATSO [OOPSLA 24]

Two nodes, one thread

x = 0 z = 0

z̃ := x
x := 1

z = 0 ✓ z = 1 ✓

Can the output be z = 1?

Yes! like this:
CPU offloads “z̃ := x” to the NIC
CPU executes “x := 1”
NIC picks up “z̃ := x” and reads 1
...

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 3 / 16

RDMATSO [OOPSLA 24]

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

x = 0 z = 0

z̃ := x
Poll()
x := 1

z = 1 ✗

Can prevent this!

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 3 / 16

RDMATSO [OOPSLA 24]

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

x = 0 z = 0

z̃ := x
Poll()
x := 1

z = 1 ✗

x = 0 z = 0
...

z̃ := x
Poll()
x := 1

z = 1 ✓

Can prevent this!

But it’s context-dependent...

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 3 / 16

Problems and Contributions

Problems with current RDMA programs:
Low-level non-modular code (no libraries)
No formalisation or verification

Our contributions:
Generalised RDMATSO to RDMAWAIT as a modular alternative
LOCO: High-performance Modular RDMA Libraries
Mowgli: Framework for Libraries in (very) weak settings such as RDMA
Local soundness result for simpler verification
Specified and verified a large fragment of LOCO using Mowgli

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 4 / 16

Problems and Contributions

Problems with current RDMA programs:
Low-level non-modular code (no libraries)
No formalisation or verification

Our contributions:
Generalised RDMATSO to RDMAWAIT as a modular alternative
LOCO: High-performance Modular RDMA Libraries
Mowgli: Framework for Libraries in (very) weak settings such as RDMA
Local soundness result for simpler verification
Specified and verified a large fragment of LOCO using Mowgli

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 4 / 16

LOCO: Overview

LOCO (Library of Composable Objects)

One manager thread talks to the hardware
⇒ RDMAWAIT (context independent code)

Tower of libraries, allowing programming
RDMA similarly to shared-memory

RDMATSO

RDMAWAIT

broadcast

barrier ring buffer

mixed-size
writes

key-value store

atomic
vars

queue locks

LOCO

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 5 / 16

LOCO: High-Performance Libraries

Broadcast Benchmark

23 24 25 26 27 28 29 210

Number of outstanding broadcasts

0K

100K

200K

300K

400K

500K

600K

Br
oa

dc
as

ts
/s

ec

Broadcast throughput

LOCO, 3 nodes
LOCO, 5 nodes
LOCO, 7 nodes
OpenMPI, 3 nodes
OpenMPI, 5 nodes
OpenMPI, 7 nodes

Key-Values Store Benchmark

5 10 15 200

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 [M

op
s/

se
c]

100% reads

5 10 15 20
Per-node thread count
0

1

2

3

4

5
50% reads

5 10 15 200.0

0.5

1.0

1.5

2.0

2.5

100% writes
Zipfian key distribution

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 6 / 16

Specification: Ring Buffer Library
Example 1: Ring Buffer (single-writer-multiple-reader, FIFO)

Send: Loc × Val → () and Recv: Loc → Val ∪ {⊥}

Send(x ,7) || Recv(x) //output?

Send(x ,7) || Recv(x) //7 or Send(x ,7) || Recv(x) //⊥

Ring Buffer library spec (wishlist, first draft, version 0)
Syntax (Send, Recv)
Behaviour constraints (e.g. FIFO)
Synchronisation dependencies (−→)

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 7 / 16

Specification: Ring Buffer Library
Example 1: Ring Buffer (single-writer-multiple-reader, FIFO)

Send: Loc × Val → () and Recv: Loc → Val ∪ {⊥}

Send(x ,7) || Recv(x) //output?

Send(x ,7) || Recv(x) //7 or Send(x ,7) || Recv(x) //⊥

Ring Buffer library spec (wishlist, first draft, version 0)
Syntax (Send, Recv)
Behaviour constraints (e.g. FIFO)
Synchronisation dependencies (−→)

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 7 / 16

Specification: Ring Buffer Library
Example 1: Ring Buffer (single-writer-multiple-reader, FIFO)

Send: Loc × Val → () and Recv: Loc → Val ∪ {⊥}

Send(x ,7) || Recv(x) //output?

Send(x ,7) || Recv(x) //7 or Send(x ,7) || Recv(x) //⊥

Ring Buffer library spec (wishlist, first draft, version 0)
Syntax (Send, Recv)
Behaviour constraints (e.g. FIFO)
Synchronisation dependencies (−→)

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 7 / 16

Specification: Barrier Library
Example 2: Barrier library

Barr : Loc → ()

...
Barr(b)

...
Barr(b)

...

...
Barr(b)

...
Barr(b)

...

Barrier library specification (wishlist, first draft, version 0)
Syntax (Barr)
Behaviour constraints (e.g. used same number of times by each thread)
Synchronisation dependencies (−→)

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 8 / 16

Specification: Barrier Library
Example 2: Barrier library

Thread synchronisation:

All threads reach the barrier before any
can continue past.

Barr : Loc → ()

...
Barr(b)

...
Barr(b)

...

...
Barr(b)

...
Barr(b)

...

Barrier library specification (wishlist, first draft, version 0)
Syntax (Barr)
Behaviour constraints (e.g. used same number of times by each thread)
Synchronisation dependencies (−→)

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 8 / 16

Specification: Barrier Library
Example 2: Barrier library

Thread synchronisation:

All threads reach the barrier before any
can continue past.

Barr : Loc → ()

...
Barr(b)

...
Barr(b)

...

...
Barr(b)

...
Barr(b)

...

Barrier library specification (wishlist, first draft, version 0)
Syntax (Barr)
Behaviour constraints (e.g. used same number of times by each thread)
Synchronisation dependencies (−→)

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 8 / 16

Execution

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

A global execution is allowed if it:
respects the semantics of every library
doesn’t create dependency cycles

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 9 / 16

Execution

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

A global execution is allowed if it:
respects the semantics of every library
doesn’t create dependency cycles

Send(x ,7)

Barr(b) Barr(b)

Recv(x) : ⊥

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 9 / 16

Execution

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

A global execution is allowed if it:
respects the semantics of every library
doesn’t create dependency cycles

Send(x ,7)

Barr(b) Barr(b)

Recv(x) : ⊥

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 9 / 16

Execution (First Try)

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

A global execution is allowed if it:
respects the semantics of every library
doesn’t create dependency cycles

Send(x ,7)

Barr(b) Barr(b)

Recv(x) : ⊥

???

???

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 9 / 16

Program Order Dependencies???

Remember the first example:

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

Program order is not always respected...

When is it respected?

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 10 / 16

Stamp ordering for RDMA

Previous documented hardware (re)orderings:

Second Stamp

Ordered?
single families

1 2 3 4 5 6 7 8 9 10 11
aCR aCW aCAS aMF aWT aNLRn aNRWn aNRRn aNLWn aRFn aGFn

Fi
rs

tS
ta

m
p

si
ng

le

A aCR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B aCW ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

C aCAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D aMF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E aWT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

fa
m

ili
es

F aNLRn ✗ ✗ ✗ ✗ ✗ SN SN SN SN SN SN
G aNRWn ✗ ✗ ✗ ✗ ✗ ✗ SN SN SN ✗ SN
H aNRRn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ SN SN SN
I aNLWn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ SN ✗ SN
J aRFn ✗ ✗ ✗ ✗ ✗ SN SN SN SN SN SN
K aGFn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 stamps (categories of operations) define when ordering is preserved.

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 11 / 16

Program Order Dependencies

Remember the first example:

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

Program order is not always respected...

Reorderings for (independent) libraries?

Mowgli solution:
Use hardware behaviours as
categories (stamps).
Libraries specify the effects of each
function.

Mowgli Ring Buffer library specification
like before: syntax, semantics, −→
Send is in the “NIC write” category
Recv is in the “CPU read” category

Mowgli Barrier library specification
like before: syntax, semantics, −→
Barr has Fence and Read behaviours

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 12 / 16

Program Order Dependencies

Remember the first example:

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

Program order is not always respected...

Reorderings for (independent) libraries?

Mowgli solution:
Use hardware behaviours as
categories (stamps).
Libraries specify the effects of each
function.

Mowgli Ring Buffer library specification
like before: syntax, semantics, −→
Send is in the “NIC write” category
Recv is in the “CPU read” category

Mowgli Barrier library specification
like before: syntax, semantics, −→
Barr has Fence and Read behaviours

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 12 / 16

Mowgli Execution (Fixed)

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

like before: syntax, semantics, −→
Send has a NIC write behaviour
Recv has a CPU read behaviour

like before: syntax, semantics, −→
Barr has Fence and Read behaviours

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 13 / 16

Mowgli Execution (Fixed)

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

like before: syntax, semantics, −→
Send has a NIC write behaviour
Recv has a CPU read behaviour

like before: syntax, semantics, −→
Barr has Fence and Read behaviours

Send(x ,7)

B
a
r
r
(b
)

B
a
r
r
(b
)

Recv(x) : ⊥

NIC Write

Fence

Read

Fence

Read

Read

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 13 / 16

Mowgli Execution (Fixed)

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

like before: syntax, semantics, −→
Send has a NIC write behaviour
Recv has a CPU read behaviour

like before: syntax, semantics, −→
Barr has Fence and Read behaviours

Send(x ,7)

B
a
r
r
(b
)

B
a
r
r
(b
)

Recv(x) : ⊥

NIC Write

Fence

Read

Fence

Read

Read

✓

✓

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 13 / 16

Mowgli Execution (Fixed)

Ring Buffer x , Barrier b

Send(x ,7)
Barr(b) Barr(b)

a := Recv(x)

Claim: a ̸= ⊥

like before: syntax, semantics, −→
Send has a NIC write behaviour
Recv has a CPU read behaviour

like before: syntax, semantics, −→
Barr has Fence and Read behaviours

Send(x ,7)

B
a
r
r
(b
)

B
a
r
r
(b
)

Recv(x) : ⊥

NIC Write

Fence

Read

Fence

Read

Read

✓

✓

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 13 / 16

Verifying Library Implementations

RDMATSO

RDMAWAIT

broadcast

barrier ring buffer

mixed-size
writes

key-value store

atomic
vars

queue locks

LOCO

Libraries can be implemented using other
libraries

Programs can use a set Λ of libraries

Inlining an implementation I (of library L)
should be fine

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 14 / 16

Implementation Soundness

How do we prove correct an implementation I for a library L?

Soundness [general, hard to show]:
Outcomes of the implementation are valid, in all contexts:
∀Λ,P. outcomeΛ(I(P)) ⊆ outcomeΛ⊎{L}(P)

Local soundness [library specific, easier to show]:
Promises of the library specification are kept (formal definition is a bit technical).
Considers I and L in isolation.

Mowgli Locality Theorem:
Local soundness implies soundness.

Programmers prove local soundness, Mowgli gives soundness for free.

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 15 / 16

Implementation Soundness

How do we prove correct an implementation I for a library L?

Soundness [general, hard to show]:
Outcomes of the implementation are valid, in all contexts:
∀Λ,P. outcomeΛ(I(P)) ⊆ outcomeΛ⊎{L}(P)

Local soundness [library specific, easier to show]:
Promises of the library specification are kept (formal definition is a bit technical).
Considers I and L in isolation.

Mowgli Locality Theorem:
Local soundness implies soundness.

Programmers prove local soundness, Mowgli gives soundness for free.

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 15 / 16

Implementation Soundness

How do we prove correct an implementation I for a library L?

Soundness [general, hard to show]:
Outcomes of the implementation are valid, in all contexts:
∀Λ,P. outcomeΛ(I(P)) ⊆ outcomeΛ⊎{L}(P)

Local soundness [library specific, easier to show]:
Promises of the library specification are kept (formal definition is a bit technical).
Considers I and L in isolation.

Mowgli Locality Theorem:
Local soundness implies soundness.

Programmers prove local soundness, Mowgli gives soundness for free.

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 15 / 16

Conclusion

Summary:
Generalised RDMATSO to RDMAWAIT as a modular alternative
LOCO: High-performance Modular RDMA Libraries
Mowgli: Framework for Libraries in (very) weak settings such as RDMA
Local soundness result for simpler verification
Specified and verified a large fragment of LOCO using Mowgli

Next: extension to RDMA Atomic operations (ESOP 2026)

Thanks for listening!

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 16 / 16

Conclusion

Summary:
Generalised RDMATSO to RDMAWAIT as a modular alternative
LOCO: High-performance Modular RDMA Libraries
Mowgli: Framework for Libraries in (very) weak settings such as RDMA
Local soundness result for simpler verification
Specified and verified a large fragment of LOCO using Mowgli

Next: extension to RDMA Atomic operations (ESOP 2026)

Thanks for listening!

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 16 / 16

Poll vs Wait Semantics
Base RDMA (RDMATSO):

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

x = 0 z = 0

z̃ := x
Poll()
x := 1

z = 1 ✗

x = 0 z = 0
...

z̃ := x
Poll()
x := 1

z = 1 ✓

LOCO (RDMAWAIT):
x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

x = 0 z = 0

z̃ :=d x
Wait(d)
x := 1

z = 1 ✗

x = 0 z = 0
...

z̃ :=d x
Wait(d)
x := 1

z = 1 ✗

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 1 / 1

Poll vs Wait Semantics
Base RDMA (RDMATSO):

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

x = 0 z = 0

z̃ := x
Poll()
x := 1

z = 1 ✗

x = 0 z = 0
...

z̃ := x
Poll()
x := 1

z = 1 ✓
LOCO (RDMAWAIT):

x = 0 z = 0

z̃ := x
x := 1

z = 1 ✓

x = 0 z = 0

z̃ :=d x
Wait(d)
x := 1

z = 1 ✗

x = 0 z = 0
...

z̃ :=d x
Wait(d)
x := 1

z = 1 ✗

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 1 / 1

	LOCO
	Library Semantics
	Implementation
	Appendix

