A Verified High-Performance Composable Object Library for
Remote Direct Memory Access
POPL 2026

Guillaume Ambal’, George Hodgkins?, Mark Madler?, Gregory Chockler?,
Brijesh Dongol®, Joseph Izraelevitz?, Azalea Raad’, Viktor Vafeiadis*

TImperial College London, 2University of Colorado, Boulder, 3University of Surrey, “MPI-SWS

January 16, 2026

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 1/16

Remote Direct Memory Access (RDMA)

CPU

Memory

DMA

Sound
Card

GPU

Guillaume Ambal Verified Object Library for RDMA

NIC

January 16, 2026

2/16

Remote Direct Memory Access (RDMA)

CPU

Memory Memory

RDMA

S(c:)und GPU A NS .N'K{
ard

RDMA: Data-transfer protocol for High-Performance Computing
Low Latency: ~ us

Guillaume Ambal Verified Object Library for RDMA January 16, 2026

2/16

RDMATS® [OOPSLA 24]

Two nodes, one thread

x=0|z=0

Z:=X

x:=1
z=0vV2=17?

Can the outputbe z =17

Guillaume Ambal Verified Object Library for RDMA

RDMATS® [OOPSLA 24]

Two nodes, one thread

x=0|z=0 Yes! like this:
_ @ CPU offloads “z := x” to the NIC
)Z(z)1(@ CPU executes “x := 1"
@ NIC picks up “zZ := x” and reads 1
z=0/ z=1/ ® ..

Can the outputbe z =17

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 3/16

RDMATSC [OOPSLA 24]

x=0|z=0 x=0]z=0
~ Z =X
Z=x <Poll()
x:=1
X :=1
221/ z:‘]x

Can prevent this!

Guillaume Ambal Verified Object Library for RDMA

RDMATS® [OOPSLA 24]

< N
1
-
o N
&..
=i
X
N
I
>

z=1v z=1x z=1/

Can prevent this!

But it’s context-dependent...

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 3/16

Problems and Contributions

Problems with current RDMA programs:
@ Low-level non-modular code (no libraries)
@ No formalisation or verification

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 4/16

Problems and Contributions

Problems with current RDMA programs:
@ Low-level non-modular code (no libraries)
@ No formalisation or verification

Our contributions:
@ Generalised RDMATSC to RDMAYA'T as a modular alternative
@ LOCO: High-performance Modular RDMA Libraries
@ Mowgli: Framework for Libraries in (very) weak settings such as RDMA
@ Local soundness result for simpler verification
@ Specified and verified a large fragment of LOCO using Mowgli

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 4/16

LOCO: Overview

LOCO (Library of Composable Objects)

One manager thread talks to the hardware
= RDMAWYA'T (context independent code)

Tower of libraries, allowing programming
RDMA similarly to shared-memory

Guillaume Ambal Verified Object Library for RDMA

key-value store

/
barrier ring buffer queue locks
\ / mixed-size atomic
broadcast writes vars
RDMAWAIT
LOCO ... (R
RDMATS®
January 16, 2026 5/16

LOCO: High-Performance Libraries

Broadcast Benchmark Key-Values Store Benchmark
Zipfian key distribution
Broadcast throughput 100% reads 50% reads 100% writes
600K s U, ;
35) r K
500K s - s :

NI
o

—
o

N\ .

200K A ‘\\.'\ v v

-
o

Broadcasts/sec

s

Throughput [Mops/sec]
S

—&— LOCO, 3 nodes 5 /,_,,/‘" g
—— LOCO, 5 nodes =7
—¥— LOCO, 7 nodes 0 == 0 0
100K 4 —i— OpenMPI, 3 nodes 5 10 15 20 5 10 15 20 5 10 15 20
~— OpenMPI, 5 nodes Per-node thread count
7 OpenMP, 7 nodes -¥-- LOCO, 7 nodes, large window
e e

—¥— LOCO, 7 nodes

—¢— Sherman, 7 nodes

== Redis, 7 nodes
Scythe, 7 nodes

Number of outstanding broadcasts

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 6/16

Specification: Ring Buffer Library

Example 1: Ring Buffer (single-writer-multiple-reader, FIFO)

Send: Loc x Val — () and Recv: Loc — Valu {Ll}

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 7/16

Specification: Ring Buffer Library
Example 1: Ring Buffer (single-writer-multiple-reader, FIFO)
Send: Loc x Val — () and Recv: Loc — Valu {Ll}

Send(x,7) I Recv(x) //output?

Send(x,7) [l Recv(x) //7 or Send(x,7) [l

Recv(x) // L

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 7/16

Specification: Ring Buffer Library

Example 1: Ring Buffer (single-writer-multiple-reader, FIFO)

Send: Loc x Val — () and Recv: Loc — Valu {Ll}

Send(x,7) I Recv(x) //output?

Send(x,7) [l Recv(x) //7 or Send(x,7) [l

Ring Buffer library spec (wishlist, first draft, version 0)

@ Syntax (Send, Recv)
@ Behaviour constraints (e.g. FIFO)
@ Synchronisation dependencies (—)

Recv(x) // L

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 7/16

Specification: Barrier Library

Example 2: Barrier library
Barr : Loc — ()

Guillaume Ambal Verified Object Library for RDMA

Specification: Barrier Library

Example 2: Barrier library
Barr : Loc — ()

Thread synchronisation: Barr(b) === Barr(b)

All threads reach the barrier before any : :
can continue past. Barr(b) ===« Barr(b)

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 8/16

Specification: Barrier Library
Example 2: Barrier library
Barr : Loc — ()

Thread synchronisation: Barr(b) === Barr(b)
All threads reach the barrier before any : :
can continue past. Barr(b) ===« Barr(b)

Barrier library specification (wishlist, first draft, version 0)
@ Syntax (Barr)

@ Behaviour constraints (e.g. used same number of times by each thread)
@ Synchronisation dependencies (—)

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 8/16

Execution

Ring Buffer x, Barrier b

Send(x,7)
Barr(b)

Barr(b)
a := Recv(x)

Claim: a# L

A global execution is allowed if it:

@ respects the semantics of every library
@ doesn’t create dependency cycles

Guillaume Ambal Verified Object Library for RDMA

January 16, 2026

9/16

Execution

Send(x,7)

Ring Buffer x, Barrier b

Send(x,7)
Barr(b)

Barr(b)
a := Recv(x)

Claim: a# L

A global execution is allowed if it:

@ respects the semantics of every library
@ doesn’t create dependency cycles

Guillaume Ambal Verified Object Library for RDMA

Barr(b)

Barr(b)

Y

Recv(x): L

January 16, 2026

9/16

Execution

Send(x,7)
Ring Buffer x, Barrier b
Send(x,7)
Barr(b) | Barr(b)
a := Recv(x) v
Barr(b Barr(b
Claim: a# L arr(b) || Barz(b)

A global execution is allowed if it:
@ respects the semantics of every library

@ doesn’t create dependency cycles Y
Recv(x): L

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 9/16

Execution (First Try)

Send(x,7)
Ring Buffer x, Barrier b
Send(X, 7) 277
Barr(b) | Barr(b)
a := Recv(x) Y
B b
Claim: a# L arr(b) ===

A global execution is allowed if it: 277

@ respects the semantics of every library

@ doesn’t create dependency cycles Y
Recv(x): L

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 9/16

Program Order Dependencies???

Remember the first example:

x=01|z=0

z=1v

Program order is not always respected...

When is it respected?

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 10/16

Stamp ordering for RDMA

Previous documented hardware (re)orderings:

Second Stamp

single families

Ordered?

aCR | aCW | aCAS | aMF | aWT | aNLR, | aNRW, | aNRR, | aNLW, | aRF, | aGF,
'MW aCR | /| / v S|V v v 7 v v v
o [acw | X | 7 v X v v 7 v v v
Q| @ el acas | / | / v |/ v v v v v v
Elo N aF [/ [/ [7 [/ [7| 7 7 7 7 VAR
& S AT | /| v |/ v 7 v v v v
— & aNLR, X X X X X SN SN SN SN SN SN
L, e e, | X | X X X | X X SN SN SN X SN
w | & BN anRR, | X X X X X X X X SN SN | SN
ER au, [X [X X X[x X X X SN X SN

= BN aRF, X X X X X SN SN SN SN SN SN
& aGF, | /| v S|/ v v 7 v v v

11 stamps (categories of operations) define when ordering is preserved.

Guillaume Ambal Verified Object Library for RDMA

January 16, 2026

11/16

Program Order Dependencies

Remember the first example:

x=01|z=0

Z:
X

Il
- X

z=1v

Program order is not always respected...

Reorderings for (independent) libraries?

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 12/16

Program Order Dependencies

Remember the first example:

x=01|z=0

Z:
X

Il
- X

z=1v

Program order is not always respected...

Reorderings for (independent) libraries?

Mowgli solution:
@ Use hardware behaviours as
categories (stamps).
@ Libraries specify the effects of each
function.

Mowgli Ring Buffer library specification

@ like before: syntax, semantics, —
@ Send is in the “NIC write” category
@ Recv is in the “CPU read” category

Mowgli Barrier library specification

@ like before: syntax, semantics, —
@ Barr has Fence and Read behaviours |

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 12/16

Mowgli Execution (Fixed)

Ring Buffer x, Barrier b

Send(x,7)
Barr(b) | Barr(b)
a = Recv(Xx)

Claim: a# L

@ like before: syntax, semantics, —
@ Send has a NIC write behaviour
@ Recv has a CPU read behaviour

@ like before: syntax, semantics, —
@ Barr has Fence and Read behaviours |

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 13/16

Mowgli Execution (Fixed)

Ring Buffer x, Barrier b

Send(x,7)
Barr(b) | Barr(b)

a = Recv(Xx)

Claim: a# L

@ like before: syntax, semantics, —
@ Send has a NIC write behaviour
@ Recv has a CPU read behaviour)

@ like before: syntax, semantics, —

Send(x,7)

NIC Write

ence

Barr(b)
i I
%)
©
a

@ Barr has Fence and Read behaviours |

Guillaume Ambal Verified Object Library for RDMA

Barr(b)

Mowgli Execution (Fixed)

Ring Buffer x, Barrier b

Send(x,7)
Barr(b) | Barr(b)
a = Recv(Xx)

Claim: a# L

@ like before: syntax, semantics, —
@ Send has a NIC write behaviour
@ Recv has a CPU read behaviour)

@ like before: syntax, semantics, —

Send(x,7)

NIC Write

i

Fence

Barr(b)

\
— |

Read

Barr(b)

@ Barr has Fence and Read behaviours |

Guillaume Ambal Verified Object Library for RDMA

A

Y

Recv(x): L

January 16, 2026 13/16

Mowgli Execution (Fixed)

Send(x,7)
Ring Buffer x, Barrier b NIC Write | |
Send(x,7)
Barr(b) | Barr(b) v
a = Recv(Xx) Y
@ Fence Fence | \&
S S [Force] | [[Force
@ |Read|"| | "|Read| &
@ like before: syntax, semantics, —
@ Send has a NIC write behaviour v/
@ Recv has a CPU read behaviour) !
. : Read
@ like before: syntax, semantics, —
@ Barr has Fence and Read behaviours | Recv(x): L

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 13/16

Verifying Library Implementations

key-value store

%

barrier ring buffer queue locks | ipraries can be implemented using other

'\ / '\ f libraries
mixed-size

atomic g
broadcast writes Programs can use a set A of libraries

vars
T Inlining an implementation / (of library L)
LOCO F%DMfW’“T should be fine
RDMATS®

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 14/16

Implementation Soundness

How do we prove correct an implementation / for a library L?
@ Soundness [general, hard to show]:

Outcomes of the implementation are valid, in all contexts:
VA, P. outcomep(/(P)) C outcomepyy(P)

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 15/16

Implementation Soundness

How do we prove correct an implementation / for a library L?

@ Soundness [general, hard to show]:
Outcomes of the implementation are valid, in all contexts:
VA, P. outcomep(/(P)) C outcomepyy(P)

@ Local soundness [library specific, easier to show]:
Promises of the library specification are kept (formal definition is a bit technical).
Considers I and L in isolation.

@ Mowgli Locality Theorem:
Local soundness implies soundness.

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 15/16

Implementation Soundness

How do we prove correct an implementation / for a library L?

@ Soundness [general, hard to show]:
Outcomes of the implementation are valid, in all contexts:
VA, P. outcomep(/(P)) C outcomepyy(P)

@ Local soundness [library specific, easier to show]:
Promises of the library specification are kept (formal definition is a bit technical).
Considers I and L in isolation.

@ Mowgli Locality Theorem:
Local soundness implies soundness.

Programmers prove local soundness, Mowgli gives soundness for free.

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 15/16

Conclusion

Summary:
@ Generalised RDMATSC to RDMAWA'T as a modular alternative
@ LOCO: High-performance Modular RDMA Libraries
@ Mowgli: Framework for Libraries in (very) weak settings such as RDMA
@ Local soundness result for simpler verification
@ Specified and verified a large fragment of LOCO using Mowgli

Next: extension to RDMA Atomic operations (ESOP 2026)

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 16/16

Conclusion

Summary:
@ Generalised RDMATSC to RDMAWA'T as a modular alternative
@ LOCO: High-performance Modular RDMA Libraries
@ Mowgli: Framework for Libraries in (very) weak settings such as RDMA
@ Local soundness result for simpler verification
@ Specified and verified a large fragment of LOCO using Mowgli

Next: extension to RDMA Atomic operations (ESOP 2026)

Thanks for listening!

Guillaume Ambal Verified Object Library for RDMA January 16, 2026 16/16

Poll vs Wait Semantics

Base RDMA (RDMATSO):
x=0|z=0 x=01|z=0 x=0|z=0
5.y Z:=X .

o 1 Po11() lf-— X
X 011()
X =
z=1v/ z=1X z=1v

Guillaume Ambal Verified Object Library for RDMA

Poll vs Wait Semantics

Base RDMA (RDMATSO):
x=0|z=0

Z:=x
X:=1

z=1v

Guillaume Ambal Verified Object Library for RDMA

Wait(d)

January 16, 2026

1/1

	LOCO
	Library Semantics
	Implementation
	Appendix

