
A Verified High-Performance Composable Object Library for

Remote Direct Memory Access

GUILLAUME AMBAL*, Imperial College London, UK
GEORGE HODGKINS*, University of Colorado, Boulder, USA
MARK MADLER, University of Colorado, Boulder, USA
GREGORY CHOCKLER, University of Surrey, UK
BRIJESH DONGOL, University of Surrey, UK
JOSEPH IZRAELEVITZ, University of Colorado, Boulder, USA
AZALEA RAAD, Imperial College London, UK
VIKTOR VAFEIADIS,MPI-SWS, Germany

Remote Direct Memory Access (RDMA) is a memory technology that allows remote devices to directly write
to and read from each other’s memory, bypassing components such as the CPU and operating system. This
enables low-latency high-throughput networking, as required for many modern data centres, HPC applications
and AI/ML workloads. However, baseline RDMA comprises a highly permissive weak memory model that is
difficult to use in practice and has only recently been formalised.

In this paper, we introduce the Library of Composable Objects (LOCO), a formally verified library for building
multi-node objects on RDMA, filling the gap between shared memory and distributed system programming.
LOCO objects are well-encapsulated and take advantage of the strong locality and the weak consistency
characteristics of RDMA. They have performance comparable to custom RDMA systems (e.g. distributed
maps), but with a far simpler programming model amenable to formal proofs of correctness.

To support verification, we develop a novel modular declarative verification framework, called Mowgli,
that is flexible enough to model multinode objects and is independent of a memory consistency model. We
instantiate Mowgli with the RDMA memory model, and use it to verify correctness of LOCO libraries.

1 Introduction

The remote direct memory access (RDMA) protocol provides a load/store interface, allowing a
machine to access the memory of a remote machine across a network without communicating
with the remote processor. The memory accesses are performed directly by the network interface
card (NIC), bypassing the software networking stack on both ends of the connection. As such,
RDMA achieves low-latency, high-throughput communication, making it a key technology in many
production-grade data centres such as those at Microsoft [Zhu et al. 2015], Google [Lu et al. 2018],
Alibaba [Wang et al. 2023b], and Meta [Gangidi et al. 2024].

Despite its memory-like interface, RDMA is a hardware-accelerated networking protocol, and
has traditionally been programmed as such—not as shared memory. This has resulted in a very
weak memory model with out-of-order behaviours visible even in a sequential setting [Ambal et al.
2024]. Consider, for example, the following program, where all memories are zero-initialised.

𝑧 := 𝑥 ; // RDMA put: write the value of local variable 𝑥 to remote location 𝑧
𝑥 := 1 // update local variable 𝑥 to 1

*co-first authors.

Authors’ Contact Information: Guillaume Ambal*, Imperial College London, UK, g.ambal@imperial.ac.uk; George Hodgkins*,
University of Colorado, Boulder, USA, George.Hodgkins@colorado.edu; Mark Madler, University of Colorado, Boul-
der, USA, Mark.Madler@colorado.edu; Gregory Chockler, University of Surrey, UK, g.chockler@surrey.ac.uk; Brijesh
Dongol, University of Surrey, UK, b.dongol@surrey.ac.uk; Joseph Izraelevitz, University of Colorado, Boulder, USA,
Joseph.Izraelevitz@colorado.edu; Azalea Raad, Imperial College London, UK, azalea.raad@imperial.ac.uk; Viktor Vafeiadis,
MPI-SWS, Germany, viktor@mpi-sws.org.

https://orcid.org/0000-0002-4667-7266
https://orcid.org/0009-0005-7327-9561
https://orcid.org/0009-0004-3433-7338
https://orcid.org/0000-0001-6700-9235
https://orcid.org/0000-0003-0446-3507
https://orcid.org/0009-0002-1267-5024
https://orcid.org/0000-0002-2319-3242
https://orcid.org/0000-0001-8436-0334
https://orcid.org/0000-0002-4667-7266
https://orcid.org/0009-0005-7327-9561
https://orcid.org/0009-0004-3433-7338
https://orcid.org/0000-0001-6700-9235
https://orcid.org/0000-0003-0446-3507
https://orcid.org/0000-0003-0446-3507
https://orcid.org/0009-0002-1267-5024
https://orcid.org/0000-0002-2319-3242
https://orcid.org/0000-0001-8436-0334

2 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

Somewhat counterintuitively, this program can result in 𝑧 getting the value 1, with the following
execution steps: (1) the put instruction (𝑧 := 𝑥) is offloaded to the NIC; (2) the CPU executes 𝑥 := 1
updating the value of 𝑥 in the local memory; and (3) the NIC executes the put instruction, fetching
the new value of 𝑥 from local memory before performing the remote write.
Since programming RDMA directly is challenging, prior work has developed custom RDMA

libraries. Most existing libraries are monolithic: they encapsulate a useful distributed protocol
(such as consensus [Aguilera et al. 2020] or distributed storage [Dragojević et al. 2014; Wang et al.
2022]) as a single, global entity—not one that can be reused by other RDMA libraries. Some other
libraries (e.g. [Cai et al. 2018; Wang et al. 2020]) provide a simple high-level memory abstraction
that hides all the complexities of a highly non-uniform, weakly consistent network memory, but
also loses a lot of the performance that can be achieved by knowing the system layout [Liu and
Mellor-Crummey 2014; Majo and Gross 2017; Tang et al. 2013]. Other intermediate layers, such as
MPI [Message Passing Interface Forum 2023] or NCCL [NVIDIA Corporation 2020] are designed
explicitly for networks and present a message passing interface that is ideal for embarrassingly
parallel or task-oriented workflows, but ill-suited for irregular and data-dependent workloads, such
as data stores or stateful transactional systems, for which shared-memory solutions excel [Liu
et al. 2021]. Although these library implementations are impressive engineering artefacts and have
often been carefully tuned to achieve very good performance, they are almost impossible to verify
formally due to their lack of modularity.

In this paper, we argue for a new way for programming RDMA applications—and more generally
systems with non-uniform weakly consistent memories—with flexible libraries that can expose
the non-uniform memory aspects and that support formal verification. Key to our approach is
composability—namely, the ability to put together smaller/simpler objects to build larger ones—and
this composability is reflected both in the design and implementation of our library as well as in
the formal proofs about its correctness.

rdmatso (§G.1)

rdmawait (§3.3)

shared
vars (§3.4)

barrier
(§4)

ring buffer
(§5)

mixed-size
writes (§H.6.1)

key-value store (§6.2)

atomic
vars

queue locks
(§B.1)

rdmarmw

Fig. 1. LOCO libraries with their dependencies

LOCO. As a first contribution, we introduce
the Library of Composable Objects (LOCO). A
LOCO object is a concurrent object as in Her-
lihy and Wing [1990a], exposing a collection of
methods, but storing its state in a distributed
fashion across all participating nodes. Famil-
iar examples include cross-node locks, barriers,
queues, and maps. LOCO objects provide en-
capsulation and can be composed together to
build other LOCO objects. We define objects en-
capsulating the underlying RDMA operations
and the local CPU instructions, and use them
to build intermediate objects, such as ring buffers, which in turn are used to build larger objects,
such as a key-value store (see Fig. 1).
For concreteness, we implement and verify LOCO objects over rdmatso (which combines an

RDMA networking fabric with Intel x86-TSO nodes), making use of an existing formalisation by
Ambal et al. [2024]. rdmatso is, however, too low-level for our purposes: it does not provide a
compositional way to wait for RDMA operations to complete, making it impossible to encapsulate it
as a LOCO object. For this reason, we introduce rdmawait, a thin layer of abstraction over rdmatso,
that attaches identifiers to RDMA operations and allows threads to perform a Wait operation to wait
for all RDMA operations with a given identifier to finish executing. To attain good performance,

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 3

the practical implementation of the Wait operation in LOCO is quite involved. Nevertheless, we
prove the correctness of a simplified version over the underlying rdmatso model.

MOWGLI. As a second contribution, we introduce Mowgli (MOdular Weak Graph-based
LIbraries), a generic, modular framework for modelling and verifying weak libraries. Mowgli
is generic in that it makes no assumptions about the underlying memory model (e.g. RDMA or TSO)
in its core theory; and it is modular in that it allows proof decomposition at library interfaces and
reasoning about individual components without referring to the internals of other components.
We instantiate Mowgli with rdmawait and establish the correctness of all the LOCO libraries

that do not depend on atomic read-modify-write (RMW) RDMA operations because the latter are
not covered by the existing rdmatso model. The verified libraries are highlighted in Fig. 1.

Mowgli represents program executions as graphs, whose nodes are called events and represent
either a simple operation like a read or a write, or a more complex operation such as a method call.
Following the declarative approach of Raad et al. [2019] and Stefanesco et al. [2024], we specify each
concurrent object with a set of axioms (i.e., consistency predicates) over events. As we shall see
in §2.3, however, events are too coarse-grained to model the intricate synchronisation guarantees
of RDMA operations.
We therefore introduce the novel notion of a subevent, allowing one to split complex library

operations into multiple subevents, each with a different stamp (representing, e.g., the node af-
fected by the subevent). Stamps are meta-categories of behaviours, shared by all libraries, and are
independent from programs. Stamps are then used to induce ordering among (sub)events. Within a
thread, they are used to define the preserved program order (ppo) [Alglave et al. 2014], which relates
(sub)events executed by a thread that may not be reordered. Across threads and nodes, stamps are
used to define the synchronisation order (so) [Dongol et al. 2018] between methods calls of the same
library. Together ppo and so are used to define the happens-before relation.

Our main result supporting modular proofs in Mowgli is a new locality result that decomposes
proving correctness of a system into proofs about the correctness of its individual components.
This is akin to the notion of compositionality for linearisability [Herlihy and Wing 1990a], but
generalised to a partially ordered setting. In our verification of LOCO, this allows us to verify a
library, then use the specification of the library in any program that uses the library. Moreover, we
show that our locality result supports both horizontal composition, where a library is used within a
client program, and vertical composition, where a library is developed from other libraries via a
series of abstractions.

Contributions. In summary, we make the following contributions:

• We define a new consistency model, rdmawait, that supports a Wait operation that allows CPUs
to wait for the confirmation (by the NIC) for a specific group of remote operations. We verify the
correctness of the rdmawait implementation over the existing rdmatso model.

• We develop LOCO, a flexible, modular object library for RDMA, and demonstrate its composi-
tionality by using simpler objects to build more advanced objects: e.g., a barrier, a ring buffer, a
linearisable key-value store, a transactional locking scheme, and a distributed DC/DC converter.

• We introduce a newmodular formal framework, Mowgli, for specifying and verifying concurrent
libraries over weakly consistent memory and distributed architectures.

• We instantiate Mowgli to verify correctness of the aforementioned LOCO libraries.
• We benchmark LOCO’s barrier and ring buffer objects and show that they outperform the
highly-tuned OpenMPI implementations of the same objects.

4 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

𝑥 =0 𝑧=0
𝑧 := 𝑥
Poll(2)
𝑥 := 1

(a) 𝑧=0✓ 𝑧 = 1✗

𝑥 =0 𝑧=0
𝑧 := 𝑥
𝑧 := 𝑥
Poll(2)
𝑥 := 1

(b) 𝑧=0✓ 𝑧=1✓

𝑥 =0 𝑧=0
𝑧 := 𝑥
𝑧 := 𝑥
Poll(2)
Poll(2)
𝑥 := 1

(c) 𝑧=0✓ 𝑧=1✗

Fig. 2. Polling under rdma
tso

𝑥 =0 𝑧=0
𝑧 :=𝑑 𝑥
Wait(𝑑)
𝑥 := 1

(a) 𝑧=0✓ 𝑧 = 1✗

𝑥 =0 𝑧=0
𝑧 :=𝑒 𝑥
𝑧 :=𝑑 𝑥
Wait(𝑑)
𝑥 := 1

(b) 𝑧=0✓ 𝑧=1✗

Fig. 3. Waiting under rdma
wait

2 Overview of LOCO and MOWGLI

In this section, we provide an informal, more detailed overview of LOCO and Mowgli. We present
LOCO’s base memory model, rdmawait, in §2.1, then discuss the key libraries that we consider.
In §2.3, we provide an overview of our Mowgli verification framework.

2.1 The rdma
wait

Memory Model

We start by informally describing LOCO’s base memory model, rdmawait, and contrast it to
rdmatso [Ambal et al. 2024] via a set of simple examples. Both models provide put operations
(𝑥 := 𝑦) for writing to remote memory and get operations (𝑦 := 𝑥) for reading from remote
memory, which are executed asynchronously. The models differ in how a thread can wait for these
asynchronous operations to terminate.

In rdmatso, waiting is achieved with the Poll primitive. Consider the programs in Fig. 2, which
comprise two nodes, with a variable 𝑥 in node 1 and a variable 𝑧 in node 2. In the first program,
Fig. 2a, node 1 comprises a single thread that first puts the value of 𝑥 to the remote location 𝑧
(located in node 2), and then polls node 2, which causes the thread to wait until the put has been
executed, and finally updates 𝑥 to 1. This means that the final value of 𝑧 is 0, and not 1. Note that in
the absence of the Poll operation, the final outcome 𝑧 = 1 would be permitted since the instruction
𝑧 := 𝑥 could simply be offloaded to the NIC, followed by the update of 𝑥 to 1. When 𝑧 := 𝑥 is later
executed by the NIC, it will load the value 1 for 𝑥 .

Synchronisation via Poll is however brittle, and sensitive to the number of instructions occurring
before the Poll. For example, as shown in Fig. 2b, the final outcome 𝑧 = 1 is once again permitted
because the Poll only waits for the earliest unpolled operation to be executed at node 2. In particular,
although Poll does wait for the first put instruction, the second put may be offloaded to the NIC and
the local write 𝑥 := 1 executed before the second put (𝑧 := 𝑥) is executed. This weak behaviour is
also allowed if we replace the first operation with any RDMA operation, even unrelated to locations
𝑥 and 𝑧. This demonstrates that rdmatso programs are not compositional: we cannot reason about a
property (e.g. the final value of 𝑧) by focusing only on the part of the program that seems relevant;
only monolithic analysis of the full program is possible. To prevent the weak behaviour of Fig. 2b,
one must add a second Poll operation as shown in Fig. 2c.
In rdmawait, synchronisation is performed with the Wait operation. RDMA operations are

associated with a work identifier, e.g. 𝑑 in Fig. 3a, which can be waited upon with a Wait operation.
Thus, unlike Poll, which waits for the first unpolled operation, rdmawait can wait for a specific
put or get operation. This improves robustness since the Wait is independent of the number of
instructions that have been executed by each thread. For example, in Fig. 3b, the Wait can target
the second put instruction using the work identifier 𝑑 and exclude the unintended outcome 𝑧 = 1.

While Wait makes targeting a remote operation easier, it does not provide more synchronisation
guarantees than the Poll operation. Waiting for a put operation (𝑧 := 𝑥) only guarantees that the

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 5

𝑦=0 𝑥 =0
𝑥 :=𝑑 1
Wait(𝑑)
𝑎 := 𝑦

𝑦 :=𝑒 1
Wait(𝑒)
𝑏 := 𝑥

(𝑎, 𝑏) = (0, 0) ✓

𝑦,𝑤 =0 𝑥, 𝑧=0
𝑥 := 1
𝑐 :=𝑑 𝑧
Wait(𝑑)
𝑎 := 𝑦

𝑦 := 1
𝑑 :=𝑒 𝑤
Wait(𝑒)
𝑏 := 𝑥

(𝑎, 𝑏) = (0, 0) ✗

Fig. 4. Preventing RDMA store buffering

local value of 𝑥 has been read, not that the remote
location 𝑧 has been modified. Thus, as shown in
Fig. 4, the store buffering behaviour across nodes is
possible even if we wait for every remote operation.
In contrast, waiting for a get operation (𝑥 := 𝑧) does
guarantee it has fully completed, i.e. that 𝑧 has been
read and 𝑥 modified. This can be exploited to prevent
the store buffering behaviour. RDMA ordering rules
ensure that later gets execute after previous puts towards the same remote node. Thus, waiting for
a (seemingly unrelated) get operation can be used to ascertain the completion of previous remote
writes.

We present the formal definitions of rdmawait in §3.3 using a declarative style. Although, like
rdmatso, it is also possible to derive an equivalent operational model, we elide these details since
the proof technique that we use (see §2.3) directly uses the declarative semantics.

Note that the actual implementation of Wait in LOCO is non-trivial, relying on a highly optimised
code path to track outstanding operations and match them to an associated Wait. This extension to
the RDMA interface is described within Section 2.2, with a more complete treatment in Appendix C.

2.2 LOCO Libraries

LOCO provides a set of commonly used distributed objects, which we call channels, built on top of
rdmawait. Channels are named and composable. To communicate over a channel, each participating
node constructs a local channel object, or channel endpoint, with the same name. Each channel
endpoint allocates zero or more named local regions of network memory when constructed, and
delivers the metadata necessary to access these local memory regions to the other endpoints during
the setup process.

Channels make it easy to develop RDMA applications and prove their correctness, for minimal
performance loss. A LOCO application will usually consist of many channels (objects) of many dif-
ferent channel types (classes). In addition, each channel can itself instantiate member sub-channels.
For instance, a key-value store might include several mutexes as sub-channels to synchronise access
to its contents.

𝑦 = 0 𝑥 = 0

𝑥 := 1
GFsv (2)
𝑎 := 𝑦

𝑦 := 1
GFsv (1)
𝑏 := 𝑥

(𝑎, 𝑏) = (0, 0) ✗

Fig. 5. Using GFsv

Shared Variable Library (sv, §3.4). One of the most basic components of
LOCO is the shared variable library. Each shared variable is replicated across
all (participating) nodes in the network and supports Writesv and Readsv
operations, which only access the local copy of the variable. Any updates to
the variable may be pushed to the other replicas by the modifying node with
a Bcastsv operation.1 We provide examples in §2.3, Fig. 9.
The shared variable library also provides a mechanism for synchronising

different nodes using a global fence (GFsv) operation. GFsv takes the node(s) on which the fence
should be performed as a parameter and causes the executing thread to wait until all prior operations
executed by the thread towards the given nodes have fully completed. This is stronger than using
the Wait primitive, as the global fence also ensures the remote write parts have completed. An
example program using a GFsv is the store buffering setting given in Fig. 5, which disallows the final
outcome (𝑎, 𝑏) = (0, 0), but allows all other combinations for 𝑎 and 𝑏 with values from {0, 1}. As

1It is also possible for replicas to pull the new value from a source node when a shared variable is modified, but we do not
model this aspect because it is not used in the libraries we consider. Moreover, LOCO also defines a stronger form of a
shared variable called an owned variable, which provides a mechanism for defining a variable’s owner that provides a single
authoritative version of the variable (describing its true value), defining a single-writer multi-reader register.

6 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

can be guessed from the similarity with Fig. 4, this global fence can be implemented by submitting
get operations and waiting for them.

𝑦 = 0 𝑥 = 0

𝑥 := 1
BARbal (𝑧)
𝑎 := 𝑦

𝑦 := 1
BARbal (𝑧)
𝑏 := 𝑥

(𝑎, 𝑏) = (1, 1) ✓

Fig. 6. Using BARbal

Barrier Library (bal, §4). A commonly used object in distributed sys-
tems is a barrier, which provides a stronger synchronisation guarantee
than global fences. All threads synchronising on a barrier must finish their
operations before execution continues. For example, consider the program
in Fig. 6, which only allows the final outcome (𝑎, 𝑏) = (1, 1) and forbids
all other outcomes. Here, nodes 1 and 2 synchronise on the barrier 𝑧, and
hence nodes 1 and 2 both wait until both writes to 𝑥 and 𝑦 have completed.

Ring Buffer Library (rbl, §5). Similarly useful is a ring buffer, which allows one to develop
producer-consumer systems. LOCO’s ring buffer supports a one-to-many broadcast, and is the
most sophisticated of the libraries that we consider.

Mixed-Size Writes (msw, §H.6.1). The final library we consider is the mixed-size write library,
which allows safe transmission of data spanning multiple words. Here, due to the asynchrony
between the CPU and the NIC, it is possible for corrupted data to be transmitted that does not
correspond to any write performed by the CPU. There are multiple solutions to this problem; we
consider a simple solution that transmits a hash alongside the data.

1 class barrier : public loco:: channel {
2 unsigned count;
3 loco::var_array <unsigned > arr;
4 public:
5 void waiting () {
6 // complete outstanding RDMA ops
7 loco:: global_fence ();
8 count ++; // increment our counter
9 arr[loco:: my_node ()].store(count);
10 arr[loco:: my_node ()]. push_broadcast

(); //and push
11 bool waiting = true;
12 while(waiting){ // wait for others
13 waiting = false; // to match
14 for (auto& i : arr) {
15 if (i.load() < count){
16 waiting = true;
17 break ;}
18 } } } };

Fig. 7. Complete C++ code for the LOCO barrier

LOCO API Example. As an example of the
LOCO C++ API, Fig. 7 shows our implementation
of a barrier object, based on Gupta et al. [2002]. The
class uses an array (arr) of shared variables as a
sub-object [Jha et al. 2019, 2017], demonstrating
composition. As with a traditional shared memory
barrier, it is used to synchronise all participants at
a certain point in execution. For each use of the
barrier, participants increment their local count
variable, then broadcast the new value to others
using their index in the array. They then wait lo-
cally, leaving the barrier only when all participants
have a count in the array not less than their own.
This code is a near-complete implementation of a
single-threaded barrier in LOCO, missing only a
boilerplate constructor.

Implementing rdma
wait

. In general, RDMA operations are assigned a unique ID at initialisation.
Subsequent queries to a corresponding completion queue (i.e. via the Poll operation) indicate the
oldest ID that has been received at the remote node and acknowledged. As mentioned in Section 2.1,
this default system results in non-local effects.
In contrast, LOCO’s backend allows for a practical implementation of rdmawait with a high-

performance and composable system for tracking RDMA operations. LOCO uses a dedicated polling
thread to query the completion queue and notify the application of tracked RDMA operations.
If the application wishes to monitor the progress of a single RDMA operation (or a set of them,
e.g. for a broadcast to all remote nodes), it creates a special ack_key object with the associated
operation IDs. In rdmawait, ack_key objects are abstracted by work identifiers (see §2.1). When all
associated IDs have been dequeued by the polling thread, the ack_key object is marked completed.
The ack_key object exports methods to check its status, i.e. the Wait operation simply looks for a

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 7

𝑥,𝑦 = 0

𝑥 := 1
𝑎 := 𝑦

𝑦 := 1
𝑏 := 𝑥

(𝑎, 𝑏) = (0, 0) ✓

(a) Store buffering

𝑥,𝑦 = 0,𝑤 = 1

𝑥 := 𝑤
𝑦 := 1

𝑎 := 𝑦
𝑏 := 𝑥

(𝑎, 𝑏) = (1, 0) ✗

(b) Message passing

𝑥,𝑦 = 0 𝑤 = 1

𝑥 := 𝑤
𝑦 := 1

𝑎 := 𝑦
𝑏 := 𝑥

(𝑎, 𝑏) = (1, 0) ✓

(c) Remote message passing

Fig. 8. TSO effects of rdma
wait

completed status. Communication between the application and the polling thread for outstanding
operation IDs is managed via a single-writer, multiple-reader lock-free queue [Morrison and Afek
2013]. A full description of this system can be found in in Appendix C.

Additional LOCO Libraries. In addition to the proven libraries that are the focus of this
paper, LOCO contains a number of additional objects that rely on an RDMA read-modify-write
primitive currently missing from the formalisation provided in rdmatso. These include an atomic
variable library for accessing these operations, a set of locks (both ticket and test-and-set with
optional local flat-combining [Hendler et al. 2010]), and a shared FiFo queue porting the cyclic
ring queue [Morrison and Afek 2013]. We intend to fully prove the correctness of these libraries in
future work.

LOCO-Based Applications. Asmentioned earlier, LOCO enables one to quickly build distributed
applications. We demonstrate this by using LOCO to construct a linearisable key-value store (§6.2),
a transactional locking scheme (§B.1), and a distributed DC/DC converter (§B.2). Additional obvious
targets for LOCO include distributed shared memories [Kaxiras et al. 2015; Keleher et al. 1994],
distributed communication collectives [Graham et al. 2006], and other HPC communication library
backends (e.g. global arrays [Nieplocha et al. 1994; Zheng et al. 2014]).

2.3 Towards a Modular Verification Framework for LOCO

To support reasoning about LOCO libraries, we develop a modular verification framework for
rdmawait programs. Our point of departure is the Yacovet framework [Raad et al. 2019; Stefanesco
et al. 2024] that was used to reason about weak shared memory within a single node. Yacovet,
however, is not expressive enough to model rdmawait programs, and so we need to develop a frame-
work that can take into account both sources of weak consistency: shared-memory concurrency
(TSO) and distribution (RDMA). This poses three main challenges.

Lack of Causality. rdmawait assumes the TSO memory model [Alglave et al. 2014; Owens et al.
2009] for each CPU within each node. This means that well-known effects such as store buffering
(see Fig. 8a) are possible, where both reads in the two threads read from the initial state. Despite this
weakness, TSO guarantees causal consistency, i.e. message passing (see Fig. 8b), where the right
thread reading the new value 1 for 𝑦 guarantees that it also reads 1 for 𝑥 . Formally, this is due to a
relation known as preserved program order (ppo) between the read of𝑤 , the write of this value to 𝑥 ,
and the write to 𝑦. However, under rdmawait, when interacting with the NIC, causal consistency
is no longer guaranteed (see Fig. 8c). This leads to our first modelling challenge: rdmawait has
a much weaker ppo relation than TSO [Alglave et al. 2014]. Here, compositionality is critical to
ensure proofs for scalability; we offer this through our locality result (Theorem 3.14).

Fine-Grained Synchronisation. A second challenge in specifying RDMA libraries is that the
same method call may interact with different library methods in different ways. To make this
problem concrete, consider a version of message passing in Fig. 9a, where node 1 updates the

8 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

SVar 𝑥 = 0
𝑧 = 0

𝑧 := 1
𝑥 :=sv 1
Bcastsv (𝑥)

𝑎 :=sv 𝑥
𝑏 := 𝑧

(𝑎, 𝑏) = (1, 0) ✗

(a) Broadcast MP

SVar 𝑥,𝑦 = 0, 0
𝑧 = 0

𝑧 := 1
𝑥 :=sv 1
Bcastsv (𝑥)

𝑎 :=sv 𝑦
𝑏 := 𝑧

𝑐 :=sv 𝑥
𝑦 :=sv 𝑐
Bcastsv (𝑦)

(𝑎, 𝑏) = (1, 0) ✓

(b) Three-node broadcast

SVar 𝑥,𝑦 = 0, 0

𝑥 :=sv 1
Bcastsv (𝑥)
𝑎 :=sv 𝑦
𝑥 :=sv 2

𝑐 :=sv 𝑥
𝑦 :=sv 𝑐
Bcastsv (𝑦)

𝑏 :=sv 𝑥

(𝑎, 𝑏, 𝑐) = (1, 2, 1) ✓

(c) Broadcast dependency cycle

Fig. 9. Broadcast synchronisation

remote variable 𝑧 (located in node 2), and then broadcasts a new value of a shared variable 𝑥 to
signal that the remote value has changed. In Fig. 9a, when node 2 sees the new value of 𝑥 , it means
that the (earlier) write to 𝑧 must have also taken effect. To represent this, we require that 𝑧 := 1
happens before Bcastsv (𝑥) and that Bcastsv (𝑥) happens before 𝑎 :=sv 𝑥 . These orders must be
part of the declarative semantics, in some shape or form, to disallow the behaviour (𝑎, 𝑏) = (1, 0).
However, naively specifying broadcast in this way is problematic. Consider the example in

Fig. 9b, where node 1 behaves as before, but the “signal variable” 𝑥 is picked up by node 3 and a
new signal using 𝑦 is broadcast by node 3. This time, when node 2 receives the signal on 𝑦 (i.e.
𝑎 = 1), there is actually no guarantee that the write on 𝑧 has completed. The outcome (𝑎, 𝑏) = (1, 0)
is allowed, as communication between each pair of nodes is independent. Thus we must not have a
happens-before dependency between the write to 𝑧 (from node 1) and the read on 𝑧.

For an even more precarious example, consider Fig. 9c, which is a possible behaviour of LOCO’s
broadcast library. The final outcome (𝑎, 𝑏, 𝑐) = (1, 2, 1) is only possible if node 1 broadcasts 𝑥 = 1 to
node 2, and 𝑥 = 2 to node 3 with a single broadcast. The broadcast is allowed to pick up the later
value 2 since the CPU might run the command 𝑥 :=sv 2 before the NIC reads the value of 𝑥 . As
mentioned above, reading the result of a broadcast must create happens-before order so that we
can preclude behaviours like in Fig. 9a. In this example, we thus need a sequence of dependencies:
𝑥 :=sv 1 → Bcastsv (𝑥) → 𝑐 :=sv 𝑥 → 𝑦 :=sv 𝑐 → Bcastsv (𝑦) → 𝑎 :=sv 𝑦 → 𝑥 :=sv 2 →
Bcastsv (𝑥) → 𝑏 :=sv 𝑥 . This sequence seemingly contains a dependency cycle from Bcastsv (𝑥)
to itself, and thus any reasonable system of dependencies on events would not allow this valid
behaviour.

We fix this apparent cycle by splitting the broadcast event into its four basic components called
subevents: (1) reading 𝑥 to send to node 2 (stamp aNLR2); (2) writing 𝑥 on node 2 (stamp aNRW2);
(3) reading 𝑥 to send to node 3 (stamp aNLR3); (4) writing 𝑥 on node 3 (stamp aNRW3). With this
we can create a more fine-grain sequence of dependencies: 𝑥 :=sv 1 → ⟨Bcastsv (𝑥), aNLR2⟩ →
⟨Bcastsv (𝑥), aNRW2⟩ → 𝑐 :=sv 𝑥 → . . . → 𝑥 :=sv 2 → ⟨Bcastsv (𝑥), aNLR3⟩ → ⟨Bcastsv (𝑥), aNRW3⟩
→ 𝑏 :=sv 𝑥 . For each remote node the broadcast reads before writing, and we have a dependency
between writing on node 2 and reading for node 3, but this does not create a dependency cycle at
the level of the subevents and we can authorise the behaviour of Fig. 9c.
Stamps are shared by all libraries and also allow us to precisely define ppo, i.e. which pairs of

effects are required to execute in order, even across libraries. For instance in example Fig. 9a we
have a dependency ⟨𝑧 := 1, aNRW2⟩

ppo

−−→ ⟨Bcastsv (𝑥), aNRW2⟩ guaranteeing that the contents of 𝑧
and 𝑥 on node 2 are modified in order. However, note that this is more subtle than a dependency
between events as the location 𝑥 might still be read by the broadcast before the content of 𝑧 is
modified, i.e. ⟨Bcastsv (𝑥), aNLR2⟩ → ⟨𝑧 := 1, aNRW2⟩ → ⟨Bcastsv (𝑥), aNRW2⟩, as is allowed by the
semantics of RDMA.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 9

Modularity. A final challenge in developing Mowgli is to support modularity through both
horizontal composition (the use of libraries in a client program) and vertical composition (the
development of libraries using other libraries as a subcomponent). Mowgli presents a generic
framework that is independent of a memory model to support such proofs through a locality
theorem. It allows the simultaneous use of multiple libraries within a single program, and defines
a semantics when the specification of a library is used in place of an implementation. Finally, it
provides local methods for proving that a library implementation satisfies its specification.

3 The Mowgli Framework and the Shared Variable Library

In this section we define Mowgli’s meta-language and general theory for modelling weak memory
libraries, as well as its notion of compositionality that enables modular proofs. We note that our
language and theory is generic and could be applied to other memory models. We present the
syntax and semantics of Mowgli in §3.1 and model for formalising libraries in §3.2. Throughout
the section, we use the shared variable library (sv) as a running example and define its consistency
in §3.4. Then we present library abstraction in §3.5 and our main locality result in §3.6.

3.1 Syntax and Semantics

In this section, we present the syntax and semantics of our basic programming language. Our
language is inspired by Cminor [Appel and Blazy 2007] and Yacovet [Stefanesco et al. 2024].

Programs. We assume a type Val of values, a type Loc ⊆ Val of locations2, and a typeMethod

of methods. The syntax of sequential programs is given by the following grammar:

𝑣, 𝑣𝑖 ∈ Val 𝑚 ∈ Method f ∈ Val → SeqProg 𝑘 ∈ N+

SeqProg ∋ p ::= 𝑣 | 𝑚(𝑣1, . . . , 𝑣𝑘) | let p f | loop p | break𝑘 𝑣

A method call is parameterised by a sequence of input values. In later sections, we will instantiate
𝑚 to basic operations such as read and write, as well as operations corresponding to method calls
of a high-level library.

For a function f mapping values to sequential programs, the syntax let p f denotes the execution
of p with an output that is then used as an input for f. This constructor is a generalisation of
the more standard let-in syntax, and for a program p2 with a free meta-variable 𝑥 we can define
let𝑥 = p1 in p2 as let p1 (𝜆𝑣 .p2 [𝑥 := 𝑣]). We can also model sequential composition, i.e. p1; p2,
as syntactic sugar for let p1 (𝜆_. p2) using a constant function that discards its input. The syntax
let p f also allows programs to perform branching and pattern-matching, via a function mapping
different kinds of values to different continuations. In particular, if 𝑣 then p1 else p2 can be
taken as syntactic sugar for let 𝑣 {true ↦→ p1, false ↦→ p2}.

Finally, our syntax includes loop p that infinitely executes the program p, as well as the break𝑘 𝑣
construct which exits 𝑘 levels of nested loops and returns 𝑣 . While uncommon, these constructs
can be used to define usual while and for loops.
We assume top-level concurrency. We assume a fixed number 𝑇 of threads and let Tid ≜

{1, 2, . . . ,𝑇 } be the set of all threads. A concurrent program is thus given by a tuple p̃ = ⟨p1, . . . , p𝑇 ⟩,
where each thread 𝑡 corresponds to a program p𝑡 ∈ SeqProg. Note that we allow libraries to
discriminate threads, and so the position of a program in p̃ matters, e.g. the program ⟨p1, . . . , p𝑇 ⟩
is not equivalent to ⟨p𝑇 , . . . , p1⟩. For instance, a pair of RDMA threads have different interactions
depending on whether they run on the same node or not.

2In Mowgli, every argument of a method call is a value. Thus identifiers (𝑥, 𝑦, . . .) are called “locations” by the libraries
but are seen as values by the meta-language.

10 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

Example 3.1 (Shared Variables). For our RDMA libraries, we assume a set of nodes, Node, of fixed
size. Each thread 𝑡 is associated to a node n(𝑡). The sv library uses the following methods:

𝑚(𝑣̃) ::= Writesv (𝑥, 𝑣) | Readsv (𝑥) | Bcastsv (𝑥, 𝑑, {𝑛1, . . . , 𝑛𝑘 }) | Waitsv (𝑑) | GFsv ({𝑛1, . . . , 𝑛𝑘 })

Writesv (𝑥, 𝑣) writes a new value 𝑣 to the location 𝑥 of the current node. Readsv (𝑥) reads the
location 𝑥 of the current node and returns its value. Bcastsv (𝑥, 𝑑, {𝑛1, . . . , 𝑛𝑘 }) broadcasts the local
value of 𝑥 and overwrites the values of the copies of 𝑥 on the nodes {𝑛1, . . . , 𝑛𝑘 }, which might
include the local node. Waitsv (𝑑) waits for previous broadcasts of the thread marked with the
same work identifier 𝑑 ∈ Wid. As mentioned in the overview, this operation only guarantees that
the local values of the broadcasts have been read, but not that remote copies have been modified.
Finally, the global fence operation GFsv ({𝑛1, . . . , 𝑛𝑘 }) ensures every previous operation of the thread
towards one of the nodes in the argument is fully finished, including the writing part of broadcasts.

Plain Executions. The semantics of a program is given by an execution, which is a graph over
events. Each event has a label taken from the set Lab ≜ Method×Val

∗ ×Val, i.e. a triple comprising
the method, the input values, and the output value. Labels are used to define events, which are
elements of the set Event ≜ Tid×EventId×Lab, where EventId ≜ N. For each event ⟨𝑡, 𝜄, 𝑙⟩ ∈ Event,
we have that 𝑡 ∈ Tid is the thread that executes the label 𝑙 ∈ Lab, and 𝜄 is a unique identifier for the
event. For an event e = ⟨𝑡, 𝜄, 𝑙⟩, we note t(e) ≜ 𝑡 .

Definition 3.2. We say that ⟨𝐸, po⟩ is a plain execution iff 𝐸 ⊆ Event, po ⊆ 𝐸 × 𝐸, and
po =

⋃
𝑡 ∈Tid po|𝑡 where every po|𝑡 (i.e. po restricted to the events of thread 𝑡) is a total order.

Here, po represents program order i.e. ⟨e1, e2⟩ ∈ po iff e1 is executed before e2 by the same thread.
We write ∅𝐺 ≜ ⟨∅, ∅⟩ for the empty execution and {e}𝐺 ≜ ⟨{e} , ∅⟩ for the execution with a

single event e. Given two executions,𝐺1 = ⟨𝐸1, po1⟩ and𝐺2 = ⟨𝐸2, po2⟩, with disjoint sets of events
(i.e. 𝐸1 ∩𝐸2 = ∅), we define their sequential composition,𝐺1;𝐺2 , by ordering all events of𝐺1 before
those of 𝐺2. Similarly, we define their parallel composition, 𝐺1∥𝐺2, by taking the union of 𝐺1 and
𝐺2. That is,

𝐺1;𝐺2 ≜ ⟨𝐸1 ∪ 𝐸2, po1 ∪ po2 ∪ (𝐸1 × 𝐸2)⟩ 𝐺1∥𝐺2 ≜ ⟨𝐸1 ∪ 𝐸2, po1 ∪ po2⟩

The plain semantics of a program p executed by a thread 𝑡 is given by JpK𝑡 , which is a set of pairs of
the form ⟨𝑟,𝐺⟩, where 𝑟 is the output and𝐺 is a plain execution. This set represents all conceivable
unfoldings of the program into method calls, even those that will be rejected by the semantics of
the corresponding libraries. Each output is a pair ⟨𝑣, 𝑘⟩, where 𝑣 is a value and 𝑘 a break number,
indicating the program terminates by requesting to exit 𝑘 nested loops and returning the value 𝑣 .

J𝑣K𝑡 ≜ {⟨⟨𝑣, 0⟩, ∅𝐺 ⟩} Jbreak𝑘 𝑣K𝑡 ≜ {⟨⟨𝑣, 𝑘⟩, ∅𝐺 ⟩}
J𝑚(𝑣̃)K𝑡 ≜ {⟨⟨𝑣 ′, 0⟩, {⟨𝑡, 𝜄, ⟨𝑚, 𝑣̃, 𝑣 ′⟩⟩}𝐺 ⟩ | 𝑣 ′ ∈ Val ∧ 𝜄 ∈ EventId}

Jlet p fK𝑡 ≜
{
⟨𝑟,𝐺1;𝐺2⟩

�� ⟨⟨𝑣, 0⟩,𝐺1⟩ ∈ JpK𝑡 ∧ ⟨𝑟,𝐺2⟩ ∈ Jf 𝑣K𝑡
}

∪
{
⟨⟨𝑣, 𝑘⟩,𝐺1⟩

�� ⟨⟨𝑣, 𝑘⟩,𝐺1⟩ ∈ JpK𝑡 ∧ 𝑘 ≠ 0
}

Jloop pK𝑡 ≜
⋃
𝑗∈N

{
⟨⟨𝑣, 𝑘⟩,𝐺0; . . . ;𝐺 𝑗 ⟩

�� (∀0 ≤ 𝑖 < 𝑗 . ⟨⟨_, 0⟩,𝐺𝑖⟩ ∈ JpK𝑡) ∧ ⟨⟨𝑣, 𝑘 + 1⟩,𝐺 𝑗 ⟩ ∈ JpK𝑡
}

The execution of a value 𝑣 simply returns ⟨𝑣, 0⟩ with an empty graph. Similarly, the execution of
break𝑘 𝑣 returns ⟨𝑣, 𝑘⟩ with a non-zero break number and an empty graph.

The plain semantics of J𝑚(𝑣̃)K𝑡 considers every value 𝑣 ′ as a possible output of the method call.
For each, we can create a graph𝐺 with a single event ⟨𝑡, _, ⟨𝑚, 𝑣̃, 𝑣 ′⟩⟩, and the corresponding output
for the program is then ⟨𝑣 ′, 0⟩ with a break number of 0.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 11

The execution of let p f has two kinds of plain semantics. Either the execution of p requests a
break, i.e. ⟨⟨𝑣, 𝑘⟩,𝐺1⟩ ∈ JpK𝑡 with 𝑘 ≠ 0, in which case let p f breaks as well with the same output.
Or p terminates with a break number of zero, and the output value 𝑣 of p is given to f. In this second
case, the plain execution of let p f is the sequential composition of the plain executions for p and
(f 𝑣), and its output value is the one of (f 𝑣).
Finally, the execution of loop p can be unfolded and corresponds to the execution of p any

number 𝑗 + 1 of times. The first 𝑗 times, p returns without requesting a break and its output value
is ignored. The (𝑗 + 1)th execution of p returns a value 𝑣 and break number 𝑘 + 1, and loop p

propagates ⟨𝑣, 𝑘⟩ with a decremented break number. The plain execution of the loop is then the
sequential composition of the plain executions of the 𝑗 + 1 iterations of p.
We lift the plain semantics to the level of concurrent programs and define

J̃pK ≜
{
⟨⟨𝑣1, . . . , 𝑣𝑇 ⟩, ∥𝑡 ∈Tid 𝐺𝑡 ⟩

�� ∀𝑡 ∈ Tid.⟨⟨𝑣𝑡 , 0⟩,𝐺𝑡 ⟩ ∈ Jp𝑡 K𝑡
}

Concurrent programs only properly terminate if each thread terminates with a break number of 0.
In which case, the output of the concurrent program is the parallel composition of the values and
plain executions of the different threads.

Executions. We generate executions from plain executions by (1) extending the model with
subevents, then (2) introducing additional relations describing synchronisation and happens-before
order. We will later define consistency conditions for executions in the context of libraries.

We assume a fixed set of stamps, Stamp = {𝑎1, . . .}, and a relation to ⊆ Stamp × Stamp. We will
use stamps to define subevents and to to define preserved program order over subevents within an
execution.

Definition 3.3. We say that ⟨𝐸, po, stmp, so, hb⟩ is an execution iff each of the following holds:
• ⟨𝐸, po⟩ is a plain execution.
• stmp : 𝐸 → P(Stamp) is a function that associates each event with a non-empty set of
stamps and induces a set of subevents, SEvent ≜ {⟨e, 𝑎⟩ | e ∈ 𝐸 ∧ 𝑎 ∈ stmp(e)}.

• so ⊆ SEvent × SEvent and hb ⊆ SEvent × SEvent are relations on SEvent defining synchro-
nisation order and happens-before order, respectively.

To define consistency, we must ultimately relate po, so, and hb. However, in many weak memory
models such as RDMA, including all of po into hb is too restrictive. We therefore make use of a
weaker relation called preserved program order, ppo ⊆ SEvent × SEvent, which we derive from po

and to as follows:

ppo ≜ {⟨⟨e1, 𝑎1⟩, ⟨e2, 𝑎2⟩⟩ | ⟨e1, e2⟩ ∈ po ∧ 𝑎1 ∈ stmp(e1) ∧ 𝑎2 ∈ stmp(e2) ∧ ⟨𝑎1, 𝑎2⟩ ∈ to}

For our RDMA libraries, we define 11 kinds of stamps. We have aCR representing a CPU read;
aCW representing a CPU write; aCAS for an atomic read-modify-write operation; aMF for a TSO
memory fence; aWT for a wait operation; aNLR𝑛 for a NIC local read; aNRW𝑛 for a NIC remote write;
aNRR𝑛 for a NIC remote read; aNLW𝑛 for a NIC local write; aRF𝑛 for a NIC remote fence; and aGF𝑛
for a global fence operation. The last 6 are families of stamps, as we create a different copy for each
node 𝑛 ∈ Node.
The stamp order to we use is defined in Fig. 10. We note ✓ when two stamps are ordered, ✗

when they are not ordered, and sn when they are ordered iff they have the same index node. For
instance, the ✗ in cell B1 indicates that when a CPU write is in program order before a CPU read,
there is no ordering guarantee between the two operations, as we assume the CPUs follow the TSO
memory model, and the read might execute first.

12 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

Second Stamp

to

single families
1 2 3 4 5 6 7 8 9 10 11
aCR aCW aCAS aMF aWT aNLR𝑛 aNRW𝑛 aNRR𝑛 aNLW𝑛 aRF𝑛 aGF𝑛

Fi
rs
tS

ta
m
p sin

gl
e

A aCR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B aCW ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

C aCAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D aMF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E aWT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

fa
m
ili
es

F aNLR𝑛 ✗ ✗ ✗ ✗ ✗ sn sn sn sn sn sn
G aNRW𝑛 ✗ ✗ ✗ ✗ ✗ ✗ sn sn sn ✗ sn
H aNRR𝑛 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sn sn sn
I aNLW𝑛 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sn ✗ sn
J aRF𝑛 ✗ ✗ ✗ ✗ ✗ sn sn sn sn sn sn
K aGF𝑛 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 10. Stamp order to for the RDMA libraries. Lines indicate the earlier stamp, columns the later. A cell

marked ✓ indicates that the stamps are ordered, and that the po ordering of subevents with these stamps is

preserved. A cell marked ✗ indicates that the stamps are not ordered, and that such subevents can execute

out of order. Finally, sn indicates the stamps are ordered iff they have the same node index.

Example 3.4 (ppo for Shared Variables). For the sv library, we use the stamping function stmpSV:
stmpSV (⟨_, _, ⟨Writesv, _, _⟩⟩) = {aCW}
stmpSV (⟨_, _, ⟨Readsv, _, _⟩⟩) = {aCR}
stmpSV (⟨_, _, ⟨Waitsv, _, _⟩⟩) = {aWT}

stmpSV (⟨_, _, ⟨GFsv, ({𝑛1, . . . , 𝑛𝑘 }), _⟩⟩) =
{
aGF𝑛1 , . . . , aGF𝑛𝑘

}
stmpSV (⟨_, _, ⟨Bcastsv, (_, _, {𝑛1, . . . , 𝑛𝑘 }), _⟩⟩) =

{
aNLR𝑛1 , aNRW𝑛1 , . . . , aNLR𝑛𝑘 , aNRW𝑛𝑘

}
Broadcasts are associated with a NIC local read and NIC remote write stamp for each remote node
they are broadcasting towards. Similarly, global fence operations are associated with a global fence
stamp for each node.
With this, the stamp order is enough to enforce the behaviour of the global fence. If we have a

program Bcastsv (𝑥, 𝑑, {. . . , 𝑛, . . .}); GFsv ({. . . , 𝑛, . . .}), the plain execution has two events e𝐵𝑅 and
e𝐺𝐹 , and the definitions of stmpSV and to (cell G11 in Fig. 10) imply ⟨e𝐵𝑅, aNRW𝑛⟩

ppo

−−→ ⟨e𝐺𝐹 , aGF𝑛⟩.

3.2 Libraries

In this section, we describe how libraries and library consistency are modelled in our framework.

Definition 3.5. We say that a triple ⟨𝑀, loc, C⟩ is a library iff each of the following holds.
(1) 𝑀 ⊆ Method is a set of methods.
(2) loc : Event|𝑀 → P(Loc) is a function associating each method call to a set of locations

accessed by the method call.
(3) C is a consistency predicate over executions, respecting the following two properties.

• Monotonicity: If ⟨𝐸, po, stmp, so, hb⟩ ∈ C (i.e. is consistent), and (ppo∪so)+ ⊆ hb
′ ⊆ hb,

then ⟨𝐸, po, stmp, so, hb′⟩ ∈ C.
• Decomposability: If ⟨(𝐸1 ⊎ 𝐸2), po, stmp, so, hb⟩ ∈ C and loc(𝐸1) ∩ loc(𝐸2) = ∅, then

⟨𝐸1, po|𝐸1 , stmp|𝐸1 , so|𝐸1 , hb|𝐸1⟩ ∈ C.

Usually, including for all of the examples considered in this paper, the locations accessed by a
method call are a subset of its arguments. E.g., we say that Write(𝑥, 𝑣) only accesses 𝑥 . Monotonicity
states that removing constraints cannot disallow a behaviour; this is trivially respected by all

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 13

reasonable libraries. Decomposability states that method calls manipulating different locations
can be considered independently. Crucially, this means combining independent programs cannot
create additional behaviours; a prerequisite for modular verification. This holds for almost all
libraries, and usually only breaks when programs have access to meta-information (e.g. the number
of instructions of the whole program).
However, decomposability does not hold for rdmatso. As show in Fig. 2, the program 𝑧 := 𝑥 ;

Poll(2);𝑥 := 1 does not allow the outcome 𝑧 = 1, while a combined program p; 𝑧 := 𝑥 ; Poll(2);𝑥 := 1
might, even when p seems independent (i.e. does not use locations 𝑧 and 𝑥). This composition
problem fundamentally prevents modular verification of rdmatso programs. It is the reason we
develop the alternative semantics of rdmawait, while ensuring the two semantics are as close as
possible.

Notation. For a library 𝐿, we have Event|𝐿.𝑀 = {⟨_, _, ⟨𝑚, _, _⟩⟩ ∈ Event | 𝑚 ∈ 𝐿.𝑀}. We use
Event|𝐿 to refer to Event|𝐿.𝑀 . Moreover, loc(e) is used to denote 𝐿.loc(e), where 𝐿 is the library
containing e (i.e. e ∈ Event|𝐿) and for 𝐸 ⊆ Event, we define loc(𝐸) ≜ ⋃

e∈𝐸 loc(e). From this, we
can also define the locations loc(p̃) of a program p̃ as loc(p̃) ≜ ⋃

⟨−,⟨𝐸,−⟩⟩∈J̃pK loc(𝐸).
Given a relation 𝑟 and a set 𝐴, we write 𝑟+ for the transitive closure of 𝑟 ; 𝑟 ∗ for its reflexive

transitive closure; 𝑟−1 for the inverse of 𝑟 ; 𝑟 |𝐴 for 𝑟 ∩ (𝐴×𝐴); and [𝐴] for the identity relation on𝐴,
i.e. {⟨𝑎, 𝑎⟩ | 𝑎 ∈ 𝐴}. We write 𝑟1; 𝑟2 for the relational composition of 𝑟1 and 𝑟2: {⟨𝑎, 𝑏⟩ | ∃𝑐. ⟨𝑎, 𝑐⟩ ∈
𝑟1 ∧ ⟨𝑐, 𝑏⟩ ∈ 𝑟2}.

Consistent Execution. Two libraries are compatible if their sets of methods are disjoint. We use
Λ to denote a set of pairwise compatible libraries.

Definition 3.6. Let Λ be a set of pairwise compatible libraries. An execution ⟨𝐸, po, stmp, so, hb⟩
is Λ-consistent iff each of the following holds.

• (ppo ∪ so)+ ⊆ hb and hb is a strict partial order (i.e. both irreflexive and transitive).
• 𝐸 =

⋃
𝐿∈Λ 𝐸 |𝐿 and so =

⋃
𝐿∈Λ so|𝐿 .

• For all 𝐿 ∈ Λ, we have ⟨𝐸 |𝐿, po|𝐿, stmp|𝐿, so|𝐿, hb|𝐿⟩ ∈ 𝐿.C.

Although the definition of Λ-consistency allows hb relations that are bigger than (ppo ∪ so)+, we
usually have hb = (ppo ∪ so)+ for the program executions we are interested in.

Given a concurrent program p̃ using libraries Λ, we note outcomeΛ (p̃) the set of all output values
of its Λ-consistent executions.

outcomeΛ (p̃) ≜
{
𝑣̃
�� ∃⟨𝐸, po, stmp, so, hb⟩ Λ-consistent. ⟨̃𝑣, ⟨𝐸, po⟩⟩ ∈ J̃pK

}
3.3 The rdma

wait
Library

rdmawait is used as the lowest library of our tower of abstraction (Fig. 1). As mentioned in §3.4,
it is the implementation target for the shared variable library (sv). It is an adaptation of rdmatso
where the poll instruction is replaced by a more intuitive wait operation.

The rdmawait library uses the following 8 methods.

𝑚(𝑣̃) ::= Write(𝑥, 𝑣) | Read(𝑥) | CAS(𝑥, 𝑣1, 𝑣2) | Mfence()
| Get(𝑥,𝑦, 𝑑) | Put(𝑥,𝑦, 𝑑) | Wait(𝑑) | Rfence(𝑛)

The first line covers usual TSO operations: Write(𝑥, 𝑣) is a CPU write; Read(𝑥) is a CPU read;
CAS(𝑥, 𝑣1, 𝑣2) is an atomic compare-and-swap operation that overwrites 𝑥 to 𝑣2 iff 𝑥 contained 𝑣1,
and returns the old value of 𝑥 ; and Mfence() is a TSO memory fence flushing the store buffer.

14 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

The second line covers RDMA-specific operations: Get(𝑥,𝑦, 𝑑) (noted 𝑥 :=𝑑 𝑦 in our examples)
is a get3 operation with work identifier 𝑑 performing a NIC remote read on 𝑦 and a NIC local write
on 𝑥 ; similarly Put(𝑥,𝑦, 𝑑) (noted 𝑥 :=𝑑 𝑦) is a put operation with work identifier 𝑑 performing
a NIC local read on 𝑦 and a NIC remote write on 𝑥 ; Wait(𝑑) waits for previous operations with
work identifier 𝑑 ; and finally Rfence(𝑛) is an RDMA remote fence for the communication channel
towards 𝑛 that does not block the CPU.
We assume that each location 𝑥 is associated with a specific node n(𝑥). From this, given

⟨𝐸, po⟩, there is a single valid stamping function stmpRL. Notably we have stmpRL (Get(𝑥,𝑦, 𝑑)) ={
aNRRn(𝑦) , aNLWn(𝑦)

}
and stmpRL (Put(𝑥,𝑦, 𝑑)) =

{
aNLRn(𝑥) , aNRWn(𝑥)

}
. Put and get operations per-

form both a NIC read and a NIC write, and as such are associated to two stamps, where the remote
node can be deduced from the location. Also, a succeeding CAS has a single stamp aCAS, while a
failing CAS has stamps {aMF, aCR}, as it behaves as both a memory fence (aMF) and a CPU read
(aCR).

The formal semantics requires several functions and relations: vR, vW, rf, and mo, with roles
similar to the semantics of sv (cf. §3.4), as well as the NIC-flush-order relation nfo representing the
PCIe guarantees that NIC reads flush previous NIC writes. The consistency predicate for rdmawait
is then stated from these relations and some derived relations, similarly to §3.4.

3.4 Example: Consistency for Shared Variables

As mentioned in Example 3.1, sv uses the methods 𝑀 = {Writesv, Readsv, Bcastsv, Waitsv, GFsv}.
Since only the method and arguments matter for the location function, we use loc(𝑚(𝑣̃)) to denote
loc(⟨_, _, ⟨𝑚, 𝑣̃, _⟩⟩), where loc(Writesv (𝑥, _)) = loc(Readsv (𝑥)) = loc(Bcastsv (𝑥, _, _)) = {𝑥}
for events accessing a location 𝑥 , and loc(e) = ∅ otherwise for methods Waitsv and GFsv.

Notation. For a subevent s, we note s.e and s.𝑎 its two components. Given an execution G =

⟨𝐸, po, stmp, so, hb⟩ and a stamp 𝑎, we write G.𝑎 for {s ∈ G.SEvent | s.𝑎 = 𝑎}. For families, by
abuse of notation, we also write e.g. G.aNRR for

⋃
𝑛∈Node G.aNRR𝑛 . We extend the notation loc to

subevents by writing loc(s) for loc(s.e). We define the set of reads as G.R ≜ G.aCR ∪ G.aCAS ∪
G.aNLR ∪ G.aNRR and writes as G.W ≜ G.aCW ∪ G.aCAS ∪ G.aNLW ∪ G.aNRW. We write G.W𝑥 ≜
{s ∈ G.W | loc(s) = {𝑥}} to constrain the set to writes on a specific location 𝑥 . We also use
|𝑡 to restrict a set or relation to a specific thread. E.g. 𝐸 |𝑡 = {e | e ∈ 𝐸 ∧ t(e) = 𝑡} and po|𝑡 =

[𝐸 |𝑡]; po; [𝐸 |𝑡].
For the sv library, we additionally define G.W𝑛 ≜ {⟨e, aCW⟩ | n(t(e)) = 𝑛} ∪ G.aNRW𝑛 as the set

of write subevents occurring on node 𝑛. This includes CPU writes on the node, as well as broadcast
writes towards 𝑛 from all threads. We also note G.W𝑛

𝑥 ≜ G.W𝑥 ∩ G.W𝑛 as expected. Similarly,
G.R𝑛 ≜ {s | s ∈ G.R ∧ n(t(s)) = 𝑛} covers reads occurring on 𝑛, either by a CPU read or as part
of a broadcast.

Consistency. We now work towards a definition of consistency for shared variables.

Definition 3.7. For an execution G = ⟨𝐸, po, stmpSV, _, _⟩, we define the following:
• The value-read function vR : G.R → Val that associates each read subevent with the value
returned, if available, i.e. if e = ⟨_, _, ⟨Readsv, _, 𝑣⟩⟩, then vR (e) = 𝑣 .

• The value-written function vW : G.W → Val that associates each write subevent with a
value G, i.e. if e = ⟨_, _, ⟨Writesv, (_, 𝑣), _⟩⟩, then vW (e) = 𝑣 .

3In the RDMA specification, Get and Put are referred to as respectively “RDMA Read” and “RDMA Write” operations. We
use the terms get and put to prevent confusion, as each of these perform both a read and a write subevents.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 15

• A reads-from relation, rf ≜
⋃
𝑛 rf

𝑛 , where each rf
𝑛 ⊆ G.W𝑛 × G.R𝑛 is a relation on

subevents of the same location and node with matching values, i.e. if ⟨s1, s2⟩ ∈ rf
𝑛 then

loc(s1) = loc(s2) and vW (s1) = vR (s2).
• A modification-order relation mo ≜

⋃
𝑥,𝑛 mo

𝑛
𝑥 describing the order in which writes on 𝑥 on

node 𝑛 reach memory.

We define well-formedness for rf and mo as follows. For each remote, a broadcast writes the
corresponding read value: if s1 = ⟨e, aNLR𝑛⟩ ∈ G.SEvent and s2 = ⟨e, aNRW𝑛⟩ ∈ G.SEvent, then
vR (s1) = vW (s2). Each rf

𝑛 is functional on its range, i.e. every read in G.R𝑛 is related to at most
one write in G.W𝑛 . If a read is not related to a write, it reads the initial value of zero, i.e. if
s2 ∈ G.R𝑛 ∧ ⟨_, s2⟩ ∉ rf

𝑛 then vR (s2) = 0. Finally, each mo
𝑛
𝑥 is a strict total order on G.W𝑛

𝑥 .
We further define the reads-from-internal relation as rfi ≜ [aCW]; (po ∩ rf); [aCR] (which cor-

responds to CPU reads and writes using the same TSO store buffer), and the reads-from-external
relation as rfe ≜ rf \ rfi. As we shall see in Def. 3.8, rfi does not contribute to synchronisation order,
whereas rfe does. Moreover, given an execution G and well-formed rf andmo, we derive additional
relations.

pf ≜
{
⟨⟨e1, aNLR𝑛⟩, ⟨e2, aWT⟩⟩

���� ⟨e1, e2⟩ ∈ po ∧
(
∃𝑑. e1 = ⟨_, _, ⟨Bcastsv, (_, _, 𝑑), _⟩⟩

∧ e2 = ⟨_, _, ⟨Waitsv, (𝑑), _⟩⟩

)}
rb
𝑛 ≜

{
⟨𝑟,𝑤⟩ ∈ G.R𝑛 × G.W𝑛

���� loc(𝑟) = loc(𝑤)
∧

(
⟨𝑟,𝑤⟩ ∈ ((rf𝑛)−1;mo

𝑛) ∨ 𝑟 ∉ img(rf𝑛)
)} rb ≜

⋃
𝑛

rb
𝑛

iso ≜ {⟨⟨e, aNLR𝑛⟩, ⟨e, aNRW𝑛⟩⟩ | e = ⟨_, _, ⟨Bcastsv, (_, _, {. . . , 𝑛, . . .}), _⟩⟩ ∈ 𝐸}
The polls-from relation pf states that a Waitsv operation synchronises with the NIC local read

subevents of previous broadcasts that use the same work identifier. The reads-before relation rb

states that a read 𝑟 executes before a specific write𝑤 on the same node and location. This is either
because 𝑟 reads the initial value of 0, or because 𝑟 reads from a write that is mo-before𝑤 . Finally,
the internal-synchronisation-order relation iso states that, within a broadcast, for each remote node
the reading part occurs before the writing part.

We can then define the consistency predicate sv.C as follows.

Definition 3.8 (sv-consistency). ⟨𝐸, po, stmp, so, hb⟩ is sv-consistent if:
• stmp = stmpSV (defined in §3.1);
• there exists well-formed vR, vW, rf, and mo, such that [aCR]; (po−1 ∩ rb); [aCW] = ∅ and
so = iso ∪ rfe ∪ pf ∪ rb ∪mo.

It is straightforward to check that this consistency predicate satisfies monotonicity and decom-
posability. For CPU reads and writes, we ask that rb does not contradict the program order. E.g., a
program Writesv (𝑥, 1); Readsv (𝑥) must return 1 and cannot return 0, even if the semantics of TSO
allows for the read to finish before the write.
There is no need to explicitly include conditions on hb in the consistency of the library, as the

global consistency condition (cf. Def. 3.6) already enforces that (ppo ∪ so ∪ hb)+ is irreflexive.

3.5 Library Implementations

We now describe a mechanism for implementing the method calls of a library by an implementation.
Our ideas build on Yacovet [Stefanesco et al. 2024], but have been adapted to our setting, which
comprises a much weaker happens-before relation (based on ppo instead of po). In particular,
Mowgli’s notions of implementation, soundness, and abstraction are similar to Yacovet (but
simpler), but the notion of “local soundness” is more complicated due to the use of ppo and
subevents.

16 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

An implementation for a library 𝐿 is a function 𝐼 : (Tid × 𝐿.𝑀 × Val
∗) → SeqProg associating

every method call of the library 𝐿 to a sequential program.

Definition 3.9. We say that 𝐼 is well defined for a library 𝐿 using Λ iff for all 𝑡 ∈ Tid,𝑚 ∈ 𝐿.𝑀
and 𝑣̃ ∈ Val

∗, we have:
(1) 𝐿 ∉ Λ, and 𝐼 (𝑡,𝑚, 𝑣̃) only calls methods of the libraries of Λ.
(2) ⟨⟨−, 𝑘 + 1⟩,−⟩ ∉ J𝐼 (𝑡,𝑚, 𝑣̃)K𝑡 , i.e. the implementation of a method call𝑚(𝑣̃) cannot return

with a non-zero break number, and thus cannot cause a loop containing a call to𝑚(𝑣̃) to
break inappropriately.

(3) if ⟨⟨𝑣, 0⟩, ⟨𝐸, po⟩⟩ ∈ J𝐼 (𝑡,𝑚, 𝑣̃)K𝑡 then 𝐸 ≠ ∅, i.e. if an implementation successfully executes,
it must contain at least one method call.

We note loc(𝐼) the set of all locations that can be accessed by the implementation of 𝐼 : loc(𝐼) ≜⋃
𝑡,𝑚,𝑣̃

⋃
(−,⟨𝐸,−⟩)∈J𝐼 (𝑡,𝑚,𝑣̃)K𝑡 loc(𝐸). We then define a function T_U𝐼 to map an implementation 𝐼 to

a concurrent program as follows.

T𝑣U𝑡,𝐼 ≜ 𝑣 T𝑚(𝑣1, . . . , 𝑣𝑘)U𝑡,𝐼 ≜
{
𝐼 (𝑡,𝑚, ⟨𝑣1, . . . , 𝑣𝑘⟩) if𝑚 ∈ 𝐿.𝑀
𝑚(𝑣1, . . . , 𝑣𝑘) otherwise

Tloop pU𝑡,𝐼 ≜ loop TpU𝑡,𝐼 Tlet p fU𝑡,𝐼 ≜ letTpU𝑡,𝐼 (𝜆𝑣.Tf 𝑣U𝑡,𝐼)
Tbreak𝑘 𝑣U𝑡,𝐼 ≜ break𝑘 𝑣 T⟨p1, . . . , p𝑇 ⟩U𝐼 ≜ ⟨Tp1U1,𝐿, . . . , Tp𝑇U𝑇,𝐿⟩

As an example, we can define the implementation 𝐼SV of the broadcast library into rdmawait.
For each location 𝑥 of the broadcast library, we create a location 𝑥𝑛 for each node 𝑛 ∈ Node. We
also create a dummy location per node, ⊥𝑛 for 𝑛 ∈ Node, and we use an additional dummy work
identifier 𝑑0.

𝐼SV (𝑡, Writesv, (𝑥, 𝑣)) ≜ Write(𝑥n(𝑡) , 𝑣)
𝐼SV (𝑡, Readsv, (𝑥)) ≜ Read(𝑥n(𝑡))

𝐼SV (𝑡, Bcastsv, (𝑥, 𝑑, {𝑛1, . . . , 𝑛𝑘 })) ≜ Put(𝑥𝑛1 , 𝑥n(𝑡) , 𝑑); . . . ; Put(𝑥𝑛𝑘 , 𝑥n(𝑡) , 𝑑)
𝐼SV (𝑡, Waitsv, (𝑑)) ≜ Wait(𝑑)

𝐼SV (𝑡, GFsv, ({𝑛1, . . . , 𝑛𝑘 })) ≜ Get(⊥n(𝑡) ,⊥𝑛1 , 𝑑0); . . . ; Get(⊥n(𝑡) ,⊥𝑛𝑘 , 𝑑0); Wait(𝑑0)
where {Write, Read, Put, Get, Wait} are methods of the rdmawait library (see §3.3).

A read/write on a thread 𝑡 accesses the location of its node n(𝑡). A broadcast executes multiple Put
operations. Each of them reads the location of its node and overwrites the location of a designated
node. A wait operation works similarly to rdmawait. Finally, a global fence executes a Get operation
towards each node requiring fencing, and waits for the completion of all the Get operations. As
mentioned in the overview, this ensures that all previous NIC operations towards these nodes are
completely finished.
We can easily see that 𝐼SV is well defined, as it cannot return a break number greater than zero,

and every (succeeding) implementation generates at least one event.
Using these definitions, we arrive at a notion of a sound implementation, which holds whenever

the implementation is a refinement of the library specification.

Definition 3.10. We say that 𝐼 is a sound implementation of 𝐿 using Λ if, for any program p̃ such
that loc(𝐼) ∩ loc(p̃) = ∅, we have that outcomeΛ (Tp̃U𝐼) ⊆ outcomeΛ⊎{𝐿} (p̃).

For a concurrent program p̃ using methods of (Λ ⊎ {𝐿}), Tp̃U𝐼 only uses methods of Λ. The
implementation 𝐼 is sound if the translation does not introduce any new outcomes. We can assume
𝐼 and p̃ use disjoint locations to avoid capture of location names.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 17

3.6 Abstractions and Locality

We now work towards the modular proof technique for verifying soundness of an implementa-
tion against a library in Mowgli. As is common in proofs of refinement, we use an abstraction
function [Abadi and Lamport 1991] mapping the concrete implementation to its abstract library
specification. For 𝑓 : 𝐴 → 𝐵 and 𝑟 ⊆ 𝐴 ×𝐴, we note 𝑓 (𝑟) ≜ {⟨𝑓 (𝑥), 𝑓 (𝑦)⟩ | ⟨𝑥,𝑦⟩ ∈ 𝑟 }.

Definition 3.11. Suppose 𝐼 is a well-defined implementation of a library 𝐿 using Λ, and that
𝐺 = ⟨𝐸, po⟩ and 𝐺 ′ = ⟨𝐸′, po′⟩ are plain executions using methods of Λ and 𝐿 respectively. We say
that a surjective function 𝑓 : 𝐸 → 𝐸′ abstracts 𝐺 to 𝐺 ′, denoted abs

𝑓

𝐼 ,𝐿
(𝐺,𝐺 ′), iff

• 𝐸 |𝐿 = ∅ (i.e.𝐺 contains no calls to the abstract library 𝐿) and 𝐸′ |𝐿 = 𝐸′ (i.e.𝐺 ′ only contains
calls to the abstract library 𝐿);

• 𝑓 (po) ⊆ (po′)∗ and ∀e1, e2, ⟨𝑓 (e1), 𝑓 (e2)⟩ ∈ po
′ =⇒ ⟨e1, e2⟩ ∈ po; and

• if e′ = ⟨𝑡, 𝜄, ⟨𝑚, 𝑣̃, 𝑣 ′⟩⟩ ∈ 𝐸′ then ⟨⟨𝑣 ′, 0⟩,𝐺 | 𝑓 −1 (e′)⟩ ∈ J𝐼 (𝑡,𝑚, 𝑣̃)K𝑡

Intuitively, abs𝑓
𝐼 ,𝐿
(𝐺,𝐺 ′) means there is some abstract concurrent program p̃ on library 𝐿 such

that ⟨_,𝐺 ′⟩ ∈ JpK is a plain execution of the abstract program, ⟨_,𝐺⟩ ∈ JTpU𝐼 K is a plain execution
of its implementation, and𝐺 and𝐺 ′ behave similarly. The abstraction function 𝑓 maps every event
of the implementation to the abstract method call it was created for. The second requirement states
that the program order is preserved in both directions. The last requirement states that, for each
abstract event e′, its implementation 𝐺 | 𝑓 −1 (e′) behaves properly. We ask that this subgraph be a
valid plain execution of the implementation with the same output value.

Lemma 3.12. Given p̃ on library 𝐿 and a well-defined implementation 𝐼 of 𝐿, if ⟨̃𝑣,𝐺⟩ ∈ JTp̃U𝐼 K
then there exists ⟨̃𝑣,𝐺 ′⟩ ∈ J̃pK and 𝑓 such that abs𝑓

𝐼 ,𝐿
(𝐺,𝐺 ′).

Finally, we can define a notion of local soundness for an implementation.

Definition 3.13. We say that a well defined implementation 𝐼 of a library 𝐿 is locally sound iff,
whenever we have a Λ-consistent execution G = ⟨𝐸, po, stmp, so, hb⟩ and abs

𝑓

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩),

then there exists stmp′, so′, and a concretisation function 𝑔 : ⟨𝐸′, po′, stmp′⟩.SEvent → G.SEvent
such that:

• 𝑔(⟨e′, 𝑎′⟩) = ⟨e, 𝑎⟩ implies 𝑓 (e) = e
′ and

– For all 𝑎0 such that ⟨𝑎0, 𝑎′⟩ ∈ to, there exists ⟨e1, 𝑎1⟩ ∈ G.SEvent such that 𝑓 (e1) = e
′,

⟨𝑎0, 𝑎1⟩ ∈ to, and ⟨⟨e1, 𝑎1⟩, ⟨e, 𝑎⟩⟩ ∈ hb
∗;

– For all 𝑎0 such that ⟨𝑎′, 𝑎0⟩ ∈ to, there exists ⟨e2, 𝑎2⟩ ∈ G.SEvent such that 𝑓 (e2) = e
′,

⟨𝑎2, 𝑎0⟩ ∈ to, and ⟨⟨e, 𝑎⟩, ⟨e2, 𝑎2⟩⟩ ∈ hb
∗.

• 𝑔(so′) ⊆ hb;
• For all hb′ transitive such that (ppo′ ∪ so

′)+ ⊆ hb
′ and 𝑔(hb′) ⊆ hb, we have

⟨𝐸′, po′, stmp′, so′, hb′⟩ ∈ 𝐿.C, where ppo′ ≜ ⟨𝐸′, po′, stmp′⟩.ppo.

Unlike the notion of soundness (cf. Def. 3.10) expressed using an arbitrary program, local sound-
ness is expressed using an arbitrary abstraction. It states that whenever we have an abstraction
from ⟨𝐸, po⟩ to ⟨𝐸′, po′⟩ and we know the implementation ⟨𝐸, po⟩ has a Λ-consistent execution G,
then the abstract plain execution ⟨𝐸′, po′⟩ also has an 𝐿-consistent execution (third point) and the
implementation respects the synchronisation promises made by the abstract library 𝐿 (first and
second point).

To translate the synchronisation promises, we require a concretisation function 𝑔 that maps every
subevent of the abstraction to a subevent in their implementation. The library 𝐿 makes two kinds
of synchronisation promises: to (via stamps) and so

′. If we have ⟨s′1, s′2⟩ ∈ so
′ in the abstraction,

18 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

then we require that the concretisation of s′1 synchronises with the concretisation of s′2, i.e. we ask
that 𝑔(so′) ⊆ hb.
Whenever the abstraction contains a subevent of the form ⟨e′, 𝑎′⟩, the usage of the stamp 𝑎′

carries an obligation. The subevent promises to synchronise with any earlier or later subevent, not
necessarily from library 𝐿, according to the to relation (cf. Fig. 10 for RDMA). In most cases, the
concretisation uses the same stamp, i.e. 𝑔(⟨e′, 𝑎′⟩) = ⟨e, 𝑎⟩ with 𝑎′ = 𝑎, and the property is trivially
respected by the implementation with ⟨e1, 𝑎1⟩ = ⟨e2, 𝑎2⟩ = ⟨e, 𝑎⟩. Otherwise we have 𝑎′ ≠ 𝑎, and
so for any earlier (resp. later) stamp 𝑎0 that 𝑎′ should synchronise with, we need to justify this
synchronisation happens in the implementation, i.e. that we have ⟨e1, 𝑎1⟩

hb
∗

−−→ ⟨e, 𝑎⟩, where 𝑎1 can
perform the expected stamp synchronisation ⟨𝑎0, 𝑎1⟩ ∈ to.
An important point to note is that hb is potentially bigger than (ppo ∪ so)+. In which case, we

need to prove the result for any reasonable hb′ bigger than (ppo′ ∪ so
′)+. Thus local soundness

states that if the implementation has a Λ-consistent execution with additional constraints, then
the abstraction similarly has an 𝐿-consistent execution with these additional constraints. This is
required for the implementation to work in any context, i.e. for programs using 𝐿 in conjunction to
other libraries, as expressed by the following theorem.

Theorem 3.14. If a well-defined implementation is locally sound, then it is sound.

Proof. See Theorem F.3. □

In the case of the shared variable library, we can use this proof technique to verify the imple-
mentation 𝐼SV.

Theorem 3.15. 𝐼SV is locally sound, and hence 𝐼SV is sound.

Proof. See Theorem H.1. □

4 Barrier Library

As discussed informally in §2.2, LOCO implements a barrier library (bal), which supports synchro-
nisation of threads across multiple threads. Note that each barrier corresponds to a set of threads,
which we refer to as the “participating threads” of a barrier. Each participating thread must wait for
all operations towards all participating threads (including its own) that are po-before each barrier
to be completed. We first present a generic specification for barriers with participating nodes in
§4.1, and the LOCO barrier and its correctness proof in §4.2. In §4.3 we discuss an issue with such a
barrier that only synchronises participating nodes and a possible fix.

4.1 Generic Barrier Specification

The barrier library (bal) only has the single method BARbal : Loc → (), taking a location as an input
and producing no output. Thus, we have loc(BARbal (𝑥)) = {𝑥}. The input location 𝑥 defines the set
of threads that synchronise via BARbal (𝑥). In our model, we assume a function b : Loc → P(Tid)
associating each location 𝑥 with a set of threads that perform a barrier synchronisation on 𝑥 .
While the LOCO barrier implementation (see §4.2) supports synchronisation across nodes

connected by RDMA, our specification is more general and abstracts away the notion of nodes.
Instead, our library defines synchronisation between threads, providing freedom to implement
different synchronisation mechanisms depending on whether the threads are on the same or on
different nodes.

Since Mowgli allows libraries to be defined in isolation, we only consider 𝐸 containing barrier
calls. Let 𝐸𝑥 ≜ {e ∈ 𝐸 | loc(e) = {𝑥}} denote the set of barrier calls on the location 𝑥 .
Definition 4.1 (bal-consistency). We say that G = ⟨𝐸, po, stmp, so, hb⟩ is bal-consistent iff:

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 19

• stmp = stmpBAL, defined as stmpBAL (⟨_, _, ⟨BARbal, (𝑥), ()⟩⟩) =
⋃
𝑡 ∈b(𝑥)

{
aGFn(𝑡)

}
∪ {aCR};

• for all 𝑥 and e ∈ 𝐸𝑥 , t(e) ∈ b(𝑥); i.e. non-participating threads do not participate;
• for all 𝑥 ∈ Loc, there is an integer 𝑐𝑥 such that for all thread 𝑡 ∈ b(𝑥) we have #(𝐸𝑥 |𝑡) = 𝑐𝑥 ;
i.e. each participating thread makes exactly 𝑐𝑥 calls to the barrier on 𝑥 ;

• there is an ordering function 𝑜 : 𝐸 → N such that for all location 𝑥 :
– if e ∈ 𝐸𝑥 then 1 ≤ 𝑜 (e) ≤ 𝑐𝑥 ;
– if e1, e2 ∈ 𝐸𝑥 and ⟨e1, e2⟩ ∈ po then 𝑜 (e1) < 𝑜 (e2); and

• so =
⋃
𝑥∈Loc

⋃
1≤𝑖≤𝑐𝑥

{
⟨⟨e1, aGF𝑛⟩, ⟨e2, aCR⟩⟩

��
e1, e2 ∈ (𝐸𝑥 ∩ 𝑜−1 (𝑖))

}
This predicate clearly respects monotonicity (since hb is unrestricted) and decomposability (since
each location is treated independently).
The function 𝑜 associates each barrier call to the number of times the location has been used

by this thread, in program order. We say that e1 and e2 synchronise together iff loc(e1) = loc(e2)
and 𝑜 (e1) = 𝑜 (e2). The stamps of the form aGF correspond to the entry points of the barrier calls,
waiting for previous operations to finish before the synchronisation. The stamp aCR represents
the exit point of the barrier, after the synchronisation. The synchronisation is then an so ordering
between aGF and aCR for barrier calls that synchronise together.

4.2 LOCO Implementation

Given b : Loc → P(Tid), for each location 𝑥 with b(𝑥) = {𝑡1, . . . , 𝑡𝑘 } synchronising 𝑘 threads,
we create a set of 𝑘 shared variables (i.e. sv locations)

{
𝑥𝑡1 , . . . , 𝑥𝑡𝑘

}
. Each shared variable 𝑥𝑡 is

used as a counter indicating how many times thread 𝑡 has executed a barrier on 𝑥 . The LOCO
implementation decomposes the barrier into three steps: (1) wait for previous operations to finish;
(2) increase your counter; (3) wait for the counters of other threads to increase.

We define the implementation 𝐼 bBAL in Fig. 11. Clearly, the implementation is well defined: it
cannot return a break number greater than zero, since all break commands have a break number
of 1 and are inside loops; and every succeeding implementation generates at least one event.

For 𝑡 ∉ b(𝑥): 𝐼 bBAL (𝑡, BARbal, (𝑥)) ≜ loop {()}

For 𝑡 ∈ b(𝑥) = {𝑡1, . . . , 𝑡𝑘 } :
𝐼 bBAL (𝑡, BARbal, (𝑥)) ≜

let 𝑠𝑛 = {n(𝑡𝑖) | 𝑡𝑖 ∈ b(𝑥)} in
GFsv (𝑠𝑛);
let 𝑣 = Readsv (𝑥𝑡) in
Writesv (𝑥𝑡 , 𝑣 + 1);
Bcastsv (𝑥𝑡 , _, (𝑠𝑛 \ {n(𝑡)}));
loop {

let 𝑣 ′ = Readsv (𝑥𝑡1) in
if 𝑣 ′ > 𝑣 then break1 () else () };

. . .

loop {
let 𝑣 ′ = Readsv (𝑥𝑡𝑘) in
if 𝑣 ′ > 𝑣 then break1 () else () }
Fig. 11. 𝐼bBAL implementation

If a method call is made by a non-participating
thread, the call is invalid and we implement it using
a non-terminating loop. This is necessary for sound-
ness, as the outcomes of the implementation must
be valid, and in this situation the bal specification
does not allow any valid outcomes.

If a method call is made by a participating thread
𝑡 , the implementation starts with a global fence en-
suring any previous operation towards any relevant
node is fully finished. Then, it increments its counter
𝑥𝑡 to indicate to other threads that the barrier has
been reached and executed. The value of 𝑥𝑡 is imme-
diately available to other threads on the same node,
and is made available to other participating nodes
using a broadcast. Note that the broadcast does not
perform a loopback (i.e. we exclude n(𝑡) from the
targets), as asking the NIC to overwrite 𝑥𝑡 with itself
might cause the new value of a later barrier call to be reverted to the current value. Then, we
repeatedly read the (local) values of the other counters 𝑥𝑡𝑖 and wait for each of them to indicate
other threads have reached their matching barrier call. Note that there is no reason to wait for the

20 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

broadcast to finish: the implementation on 𝑡 might go ahead before other threads are aware that 𝑡
reached the barrier, but that does not break the guarantees provided by the barrier.

Theorem 4.2. The implementation 𝐼 bBAL is locally sound.

Proof. See Theorem H.5. □

4.3 Supporting Transitivity

𝑥 = 0
𝑥 := 1
BARbal (𝑏1)

BARbal (𝑏1)
BARbal (𝑏2)

BARbal (𝑏2)
𝑎 := 𝑥

𝑎 = 0 ✓

Fig. 12. Allowed weak barrier behaviour

The barrier semantics in §4.1 only performs a global fence
on nodes with participating threads. While this appears in-
tuitive and reduces assumptions about other nodes, barrier
synchronisation using such a library is not transitive. For
example, consider the program in Fig. 12. Since 𝑥 := 1 is an
operation towards node 3, the barrier BARbal (𝑏1) does not wait for it to finish, allowing 𝑎 = 0.

Such a transitive barrier can straightforwardly be obtained by synchronising across all nodes, in-
stead of just “participating” threads. For the specification, we define stmpBAL (⟨_, _, ⟨BARbal, (𝑥), ()⟩⟩) =⋃
𝑛∈Node {aGF𝑛} ∪ {aCR} and for the implementation, we define 𝐼 bBAL (𝑡, BARbal, (𝑥)) ≜ let 𝑠𝑛 =

Node in This stronger version is the one implemented in LOCO (see Fig. 7).

5 Ring Buffer Library

The ring buffer library (rbl) provides methods for a single-writer-multiple-reader FiFo queue for
messages of any size, where each message is duplicated as necessary and can be read once by each
reader. Here, we present its specification (§5.1), and an implementation and correctness proof (§5.2).

5.1 Ring Buffer Specification

The ring buffer library has two methods SubmitRBL : Loc × Val
∗ → B and ReceiveRBL : Loc →

Val
∗ ⊎ {⊥}, with loc(SubmitRBL (𝑥, _)) = loc(ReceiveRBL (𝑥)) = {𝑥}. SubmitRBL (𝑥, 𝑣̃) tries to add

a new message 𝑣̃ to the ring buffer 𝑥 . It can either fail if the ring buffer is full, returning false, or
succeed returning true. ReceiveRBL (𝑥) tries to read a message from the ring buffer 𝑥 . It can either
succeed if there is at least one pending message, returning the next message, or fail if there is no
pending messages, returning ⊥.

In our model, we assume two functions wthd : Loc → Tid and rthd : Loc → P(Tid) associating
each location 𝑥 with a writing thread wthd(𝑥) and a set of reader threads rthd(𝑥). For subevents,
we define the stamping function stmpRBL as follows:

stmpRBL (⟨𝑡, _, ⟨SubmitRBL, (𝑥, _), true⟩⟩) ≜
{
aNRWn(𝑡 ′)

�� 𝑡 ′ ∈ rthd(𝑥) ∧ n(𝑡 ′) ≠ n(𝑡)
}
∪ {aCW}

stmpRBL (⟨𝑡, _, ⟨SubmitRBL, (𝑥, _), false⟩⟩) ≜ {aWT}
stmpRBL (⟨_, _, ⟨ReceiveRBL, (𝑥), 𝑣̃⟩⟩) ≜ {aCR}
stmpRBL (⟨_, _, ⟨ReceiveRBL, (𝑥),⊥⟩⟩) ≜ {aWT}

A successful call to SubmitRBL (with return value true) is denoted by a write stamp for each
relevant node: the stamp aCW is used by the writer node, and the stamps aNRWn(𝑡 ′) are used by the
corresponding remote nodes. Failing calls (with return value false or ⊥) are depicted by the stamp
aWT. Finally, a succeeding ReceiveRBL call uses the reading stamp aCR.

We note different sets corresponding to calls to SubmitRBL succeeding (W) and calls to ReceiveRBL
failing (F) or succeeding (R). Calls to SubmitRBL failing are ignored by the specification.

W𝑛
𝑥 ≜

{
⟨e, aNRW𝑛⟩

��
e = ⟨𝑡, _, ⟨SubmitRBL, (𝑥, _), true⟩⟩ ∈ 𝐸 ∧ aNRW𝑛 ∈ stmpRBL (e)

}
∪
{
⟨e, aCW⟩

��
e = ⟨𝑡, _, ⟨SubmitRBL, (𝑥, _), true⟩⟩ ∈ 𝐸 ∧ n(𝑡) = 𝑛

}

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 21

F 𝑛
𝑥 ≜

{
⟨e, aWT⟩

��
e = ⟨𝑡, _, ⟨ReceiveRBL, (𝑥),⊥⟩⟩ ∈ 𝐸 ∧ n(𝑡) = 𝑛

}
R𝑛𝑥 ≜

{
⟨e, aCR⟩

��
e = ⟨𝑡, _, ⟨ReceiveRBL, (𝑥), 𝑣̃⟩⟩ ∈ 𝐸 ∧ n(𝑡) = 𝑛

}
We then define the reads-from relation rf matching successful SubmitRBL and ReceiveRBL events.

Definition 5.1. Given G = ⟨𝐸, po, stmpRBL, _, _⟩, we say that rf is well-formed iff each of the
following holds:

(1) rf =
⋃
𝑛,𝑥 rf

𝑛
𝑥 with rf

𝑛
𝑥 ⊆ W𝑛

𝑥 × R𝑛𝑥
(2) rf

𝑛
𝑥 is total and functional on its range, i.e. each read subevent in R𝑛𝑥 is related to exactly

one write subevent inW𝑛
𝑥 .

(3) If (⟨_, _, ⟨SubmitRBL, (𝑥, 𝑣̃), true⟩⟩, 𝑎) rf−→ (⟨_, _, ⟨ReceiveRBL, (𝑥), 𝑣̃ ′⟩⟩, 𝑎′) then 𝑣̃ = 𝑣̃ ′, i.e.
related events write and read the same tuple of values.

(4) If ⟨s1, s2⟩ ∈ rf, ⟨s1, s3⟩ ∈ rf, and 𝑠2 ≠ 𝑠3, then t(s2) ≠ t(s3), i.e. each thread can read each
message at most once.

(5) If s1, s2 ∈ W𝑛
𝑥 , ⟨s1, s2⟩ ∈ po, and ⟨s2, s4⟩ ∈ rf, then there is s3 such that ⟨s1, s3⟩ ∈ rf, and

⟨s3, s4⟩ ∈ po, i.e. threads cannot jump a message.

We define the fails-before relation fb expressing that a failing ReceiveRBL occurs before a suc-
ceeding SubmitRBL as follows:

fb ≜
⋃
𝑛,𝑥

(
F 𝑛
𝑥 ×W𝑛

𝑥 \ (po−1; rf−1)
)

If s1 ∈ W𝑛
𝑥 and s3 ∈ F 𝑛

𝑥 , then the contents written by s1 is not available when s3 is executed. Either
there is s2 such that ⟨s1, s2⟩ ∈ rf and ⟨s2, s3⟩ ∈ po, in which case the message has been read; or
there is no such s2 and we have ⟨s3, s1⟩ ∈ fb to express that the message was not yet written.

Definition 5.2 (rbl-consistency). We say that an execution G = ⟨𝐸, po, stmpRBL, so, hb⟩ is bal-
consistent iff:

• if ⟨𝑡, _, ⟨SubmitRBL, (𝑥, _), _⟩⟩ ∈ 𝐸 then 𝑡 = wthd(𝑥); and if ⟨𝑡, _, ⟨ReceiveRBL, (𝑥), _⟩⟩ ∈ 𝐸
then 𝑡 ∈ rthd(𝑥); and

• there exists a well-formed rf such that so = rf ∪ fb.

Note that this definition allows the writer thread to also be a reader, and nodes to have multiple
reading threads. Moreover, the consistency predicate does not tell us anything about failing writes;
they may fail spuriously.

𝑎 := SubmitRBL (𝑥, 1)
GFsv ({𝑛2})
𝑐 := ReceiveRBL (𝑦)

𝑏 := SubmitRBL (𝑦, 1)
GFsv ({𝑛1})
𝑑 := ReceiveRBL (𝑥)

(𝑎, 𝑏, 𝑐, 𝑑) = (true, true,⊥,⊥) ✗

Fig. 13. Alternative ring buffer semantics

Alternative weaker semantics. Instead of requir-
ing so = rf ∪ fb, we could give an alternative specifi-
cation with so = rf and hb

−1 ∩ fb = ∅. The latter says
that you still cannot ignore (fb) a write that you know
(hb) has finished; but if you do ignore a write, you do
not have to export the guarantee (so) that the write has not finished. For instance, take the litmus
test in Fig. 13. With the semantics in Def. 5.2, at least one of the two ReceiveRBL has to succeed.
With the weaker semantics, they are allowed to both fail, even when both SubmitRBL calls succeed.

5.2 LOCO Implementation

As before, we assume given the functions wthd : Loc → Tid and rthd : Loc → P(Tid). We also
assume an integer 𝑆 representing the size of the ring buffer. We implement the ring buffer library
(rbl) using the shared variable library (sv). For each location 𝑥 with rthd(𝑥) = {𝑡1, . . . , 𝑡𝑘 } we

22 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

For wthd(𝑥) = 𝑡 ∧ rthd(𝑥) = {𝑡1; . . . ; 𝑡𝑘 } :
𝐼
wthd,rthd
S,RBL (𝑡, SubmitRBL, (𝑥, 𝑣̃ = (𝑣1, . . . , 𝑣𝑉)) ≜
let 𝑠𝑛 = {n(𝑡𝑖) | 𝑡𝑖 ∈ rthd(𝑥)} \ {n(𝑡)} in

let𝑉 = len(𝑣̃) in
let𝐻 = Readsv (ℎ𝑥) in
let𝐻1 = Readsv (ℎ𝑥𝑡1) in
. . .

let𝐻𝑘 = Readsv (ℎ𝑥𝑡𝑘) in
let𝑀 = min({𝐻1, . . . , 𝐻𝑘 }) in
if (𝐻 −𝑀) + (𝑉 + 1) > 𝑆 then false else {
Writesv (𝑥𝐻%𝑆 ,𝑉); Bcastsv (𝑥𝐻%𝑆 , _, 𝑠𝑛);
Writesv (𝑥 (𝐻+1)%𝑆 , 𝑣1); Bcastsv (𝑥 (𝐻+1)%𝑆 , _, 𝑠𝑛);
. . .

Writesv (𝑥 (𝐻+𝑉)%𝑆 , 𝑣𝑉); Bcastsv (𝑥 (𝐻+𝑉)%𝑆 , _, 𝑠𝑛);
Waitsv (𝑑𝑥);
Writesv (ℎ𝑥 , 𝐻 +𝑉 + 1); Bcastsv (ℎ𝑥 , 𝑑𝑥 , 𝑠𝑛);
true };

For 𝑡 ∉ rthd(𝑥):
𝐼
wthd,rthd
S,RBL (𝑡, ReceiveRBL, (𝑥)) ≜ loop {()}

For 𝑡 ∈ rthd(𝑥):
𝐼
wthd,rthd
S,RBL (𝑡, ReceiveRBL, (𝑥)) ≜
let𝐻 = Readsv (ℎ𝑥𝑡) in
let𝐻 ′ = Readsv (ℎ𝑥) in
if 𝐻 ≥ 𝐻 ′ then ⊥ else {

let𝑉 = Readsv (𝑥𝐻%𝑆) in
let 𝑣1 = Readsv (𝑥 (𝐻+1)%𝑆) in
. . .

let 𝑣𝑉 = Readsv (𝑥 (𝐻+𝑉)%𝑆) in
Writesv (ℎ𝑥𝑡 , 𝐻 +𝑉 + 1);
if n(wthd(𝑥)) = n(𝑡) then () else

{ Bcastsv (ℎ𝑥𝑡 , _, {n(wthd(𝑥))}) };
(𝑣1, . . . , 𝑣𝑉) };

Fig. 14. Implementation 𝐼
wthd,rthd
S,RBL of the ring buffer library into sv

create the shared variable (i.e. sv locations) 𝑥0, . . . , 𝑥𝑆−1 for the content of the buffer, as well as
shared variables ℎ𝑥 for the writer and ℎ𝑥𝑡1 ; . . . ;ℎ

𝑥
𝑡𝑘
for the readers. We also use a work identifier 𝑑𝑥 .

Events that do not respect rthd or wthd are implemented using an infinite loop (i.e. loop {()}),
similarly to other implementations. Otherwise, we use the implementation 𝐼 wthd,rthdS,RBL given in Fig. 14,
where % represents the modulo operation.

The value of ℎ𝑥 represents the next place to write for the writing thread. The value of ℎ𝑥𝑡𝑖
represents the next place thread 𝑡𝑖 needs to read. If ℎ𝑥 = ℎ𝑥𝑡𝑖 then thread 𝑡𝑖 is up-to-date and needs
to wait for the writer to send additional data. If the difference between ℎ𝑥 and ℎ𝑥𝑡𝑖 gets close to 𝑆 ,
then the buffer is full and the writer cannot send any more data.
In the implementation of SubmitRBL, the value 𝑀 represents the minimum of all ℎ𝑥𝑡𝑖 . As such,

(𝐻 −𝑀) represents the amount of space currently in use. Since (𝑉 + 1) represents the number
of cells necessary to submit a new message (the size 𝑉 itself is also submitted), we can proceed if
𝐻 −𝑀 +𝑉 + 1 ≤ 𝑆 , i.e. if there is enough free space.

Since, for a specific remote node, the broadcasts complete in order, when a reader sees the new
value of ℎ𝑥 it means the written data is available. We need to take care that the broadcast of ℎ𝑥 must
read from the write of the same function call, and not from the write of a later call to SubmitRBL.
Otherwise, the value of ℎ𝑥 for the second submit might be available to readers before the data of
the second submit. For this, we simply need to wait for the broadcast of previous function calls,
using Waitsv (𝑑𝑥), before modifying ℎ𝑥 .
When thread 𝑡𝑖 wants to receive, it only proceeds if ℎ𝑥 > ℎ𝑥𝑡𝑖 , otherwise 𝑡𝑖 is up-to-date and

returns ⊥. After reading a message, the reader updates ℎ𝑥𝑡𝑖 to signal to the writer the space of the
message is no longer in use. If the reader is on the same node as the writer, there is no need for a
broadcast, otherwise the reader broadcasts to the node of the writer.
With this implementation, each participating node possesses only one copy of the data, and

potentially multiple readers per node can read from the same memory locations.

Theorem 5.3. The implementation 𝐼 wthd,rthdS,RBL is locally sound.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 23

2 4 6 8 10 12 14 16
Thread count

0K

25K

50K

75K

100K

125K

150K

175K

200K

225K

Ba
rri

er
/s

ec

Barrier throughput (Fence vs. No Fence)
LOCO-no-fence, 3 nodes
LOCO-no-fence, 5 nodes
LOCO-no-fence, 7 nodes
LOCO-fence, 3 nodes
LOCO-fence, 5 nodes
LOCO-fence, 7 nodes
OpenMPI, 3 nodes
OpenMPI, 5 nodes
OpenMPI, 7 nodes

23 24 25 26 27 28 29 210

Number of outstanding broadcasts

0K

100K

200K

300K

400K

500K

600K

Br
oa

dc
as

ts
/s

ec

Broadcast throughput

LOCO, 3 nodes
LOCO, 5 nodes
LOCO, 7 nodes
OpenMPI, 3 nodes
OpenMPI, 5 nodes
OpenMPI, 7 nodes

Fig. 15. Comparison of barrier and broadcast operations for LOCO and OpenMPI.

Proof. See Theorem H.7. □

6 Evaluation

In this section, we explore the performance of our LOCO primitives, then use them to build a high
performance key-value store. Further applications can be found in §B.

All results were collected using c6525 − 25g nodes on the Cloudlab platform [clo [n. d.]]. These
machines each have a 16-core AMD 7302P CPU, running Ubuntu 22.04. Nodes communicate over a
25 Gbps Ethernet fabric using Mellanox ConnectX-5 NICs.

6.1 LOCO Primitives

First, we compare the performance of the verified barrier (bal) and ring buffer (rbl) primitives to
equivalent operations in OpenMPI [Gabriel et al. 2004], a message-passing library commonly used
to build distributed applications. We compare against OpenMPI 5.0.5, using the PML/UCX backend
for RoCE support. Results are shown in Figure 15.
For the barrier experiments, we compare to the MPI_Barrier operation, varying both thread

count per node and node count. The MPI barrier does not actually provide synchronization,
expecting the user to instead appropriately track and fence operations before using the primitive.
We compare the barrier to our LOCO barrier, both with and without the synchronization fence, and
show that the LOCO barrier with equivalent semantics (no fence) performs as well or better than
the MPI barrier. Note the MPI barrier dynamically switches between several internal algorithms
adjusting to load leading to non-smooth performance across the test domain.
For the ring buffer experiments, we compare a ring buffer broadcast to the MPI_Ibcast (non-

blocking broadcast) operation. We measure across different node counts and amounts of “network
load”, that is, the number 𝑛 of outstanding broadcast operations in the network, along with total
node count. A single node acts as the sender: it starts by sending 𝑛 broadcasts, then sends a new one
every time a prior message completes. All other nodes wait to receive and acknowledge messages.
Messages have a fixed size of 64 bytes. Here, we find that the formally verified LOCO ring buffer
provides better broadcast performance than MPI in most configurations, with MPI performance
falling drastically as the number of outstanding messages rises.

6.2 Example Application: A Key-Value Store

24 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

5 10 15 200

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 [M

op
s/

se
c]

100% reads

5 10 15 20
Per-node thread count
0

2

4

6

8

10

12

14

16
50% reads

5 10 15 200

2

4

6

8

10
100% writes

Uniform key distribution

5 10 15 200

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 [M

op
s/

se
c]

100% reads

5 10 15 20
Per-node thread count
0

1

2

3

4

5
50% reads

5 10 15 200.0

0.5

1.0

1.5

2.0

2.5

100% writes
Zipfian key distribution

5 10 15 200

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 [M

op
s/

se
c]

100% reads

5 10 15 20
Per-node thread count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

50% reads

5 10 15 200

2

4

6

8

10
100% writes

LOCO, 3 nodes, large window
LOCO, 3 nodes
Sherman, 3 nodes
Redis, 3 nodes
Scythe, 3 nodes

LOCO, 5 nodes, large window
LOCO, 5 nodes
Sherman, 5 nodes
Redis, 5 nodes
Scythe, 5 nodes

LOCO, 7 nodes, large window
LOCO, 7 nodes
Sherman, 7 nodes
Redis, 7 nodes
Scythe, 7 nodes

Uniform key distribution

Fig. 17. Throughput comparison of key-value stores.

Fig. 16. kvstore read and write operations

Beyond our microbenchmarks, we describe an exam-
ple LOCO application: a key-value store, built using
composable LOCO primitives.
Our kvstore object is a distributed key-value

store with a lookup operation that takes no locks,
and insertion, deletion, and update operations pro-
tected by locks. Lookup and update are depicted in
Fig. 16. Each node allocates a remotely-accessible
memory region that is used to store values and
consistency metadata (a checksum for atomicity, a
counter for garbage collection, and a valid bit).
Each node also maintains a local index (a C++

unordered_map), protected by a local reader-writer
lock, which records the locations of all keys in the kvstore as (node_id, array_index) pairs, along
with a counter matching the one stored with the data. The kvstore is linearisable, with a proof
given in §I — our proof is simplified by leveraging the compositional properties of LOCO. Note
that rdmatso does not have a semantics for locks or RDMA read-modify-write operations, which
means that this proof currently does not use Mowgli. We consider an extension of rdmatso with
synchronisation operations (and hence a full proof of kvstore) to be future work. Almost all RDMA
maps [Barthels et al. 2015; Kalia et al. 2014; Li et al. 2023; Lu et al. 2024; Wang et al. 2022] lack
any formal safety specification (we are only aware of two [Dragojević et al. 2014],[Alquraan et al.
2024]), likely due to difficulties in encapsulation, which the LOCO philosophy solves.
We compared our key-value store design against Sherman [she [n. d.]; Wang et al. 2022] and

the MicroDB from Scythe [scy [n. d.]; Lu et al. 2024], two state-of-the-art RDMA key-value stores.
We also compare against Redis-cluster [Ltd. 2021] as a non-RDMA baseline. Results are shown
in Figure 17. We measured throughput on read-only, mixed read-write, and write-only operation
distributions, across both uniform and Zipfian (𝜃 = 0.99) key distributions, and across different
node counts and per-node thread counts. Each data point is the geometric mean of 5 runs with a 20
second duration, not including prefill.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 25

All benchmarks use a 10MB keyspace, filled to 80% capacity with 64-bit keys and values. All
benchmarks use the CityHash64 key hashing function [Pike and Alakuijala [n. d.]], and the YCSB-C
implementation of a Zipfian distribution [ycs [n. d.]].

We modified Sherman to issue a fence (GFsv) between lock-protected writes and lock releases to
solve a bug related to consistency issues. Our kvstore also issues a fence for the same reason. For
both, this fence incurs a 15% overhead.

For LOCO, Sherman, and Redis, write operations are updates. For Scythe, we found that stressing
update operations led to program instability and very low throughput, so we use the performance
of insertion operations as an upper bound on write performance. For Redis, we configure a cluster
with no replication or persistence. Since each Redis server instance uses 4 threads, we create
ceil(num_threads/4) server instances for a given thread count. We use Memtier [Ltd. 2024] as
a benchmark client. Each node runs a single Memtier instance with threads equal to the thread
count, and 128 clients per thread (matching the LOCO large window size).

In addition, all systems expose a parameter we call the window size, which specifies the maximum
number of outstanding operations per application thread (note this is not a batch size – each
operation is started and completed individually). Increasing LOCO’s window size to 128 yielded
significant improvement (the “large window” series). However, increasing Sherman’s and Scythe’s
window sizes appeared to cause internal errors, so the main results for all systems except Redis
(see above) use a window size of 3 for accurate comparison.

LOCO outperforms Sherman on read-only configurations. We believe this is because Sherman
reads whole sections of the tree from remote memory, while the LOCO design looks up the location
locally and only remotely reads the value. On the other hand, LOCO’s advantage over Sherman for
Zipfian writes likely comes from the better performance under contention.
Sherman outperforms LOCO (with a window size of 3) on mixed read-write and write-only

distributions on uniform keys, while the reverse is true for Zipfian keys. Sherman’s advantage here
is likely due to the fact that, unlike LOCO, Sherman colocates locks with data, allowing them to
issue lock releases in a batch with writes.

7 Related and Future Work

Although the formal semantics of RDMA has only recently been established [Ambal et al. 2024],
our work is able to take advantage of earlier results in weak memory hardware [Alglave et al.
2014; Flur et al. 2016] and programming languages [Batty et al. 2011; Lahav et al. 2017]. We do not
provide their details here since they are rather expansive.
RDMA Semantics. Prior works on RDMA semantics include coreRMA [Dan et al. 2016] (which
formalises RDMA over the SC memory model) and rdmatso [Ambal et al. 2024], a more realistic
formal model that is very close to the Verbs library [linux-rdma 2018], describing the behaviour of
RDMA over TSO. These semantics are however low-level and are difficult for programmers to use
directly, as illustrated by examples such as those in Fig. 2.
RDMA Libraries. Much prior work in RDMA focuses on upper-level primitives, e.g. consensus
protocols [Aguilera et al. 2019, 2020; Izraelevitz et al. 2023; Jha et al. 2019; Poke and Hoefler 2015],
distributed maps or databases [Alquraan et al. 2024; Barthels et al. 2015; Dragojević et al. 2014, 2015;
Gavrielatos et al. 2020; Kalia et al. 2014; Li et al. 2023;Wang et al. 2022], graph processing [Wang et al.
2023a], distributed learning [Ren et al. 2017; Xue et al. 2019], stand-alone data structures [Brock et al.
2019; Devarajan et al. 2020], disaggregated scheduling [Ruan et al. 2023a,b] or file systems [Yang et al.
2019, 2020]. These works focus on the final application, rather than considering the programming
model as its own, partitionable problem. As a result, the intermediate library between RDMA
and the exported primitive is usually ad-hoc and tightly coupled to the application, or effectively

26 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

non-existent. In general, these applied, specific, projects manage raw memory explicitly statically
allocated to particular nodes, use ad-hoc atomicity and consistencymechanisms, and do not consider
the possibility of primitive reuse. This design is not a fundamentally flawed approach, but it does
raise the possibility of a better mechanism, which likely could underlie all the above solutions.
Some works have considered this intermediate layer explicitly, however, the general approach

for this intermediate layer has been to encapsulate local and remote memory as distributed shared
memory, that is, a flat, uniform, coherent, and consistent address space hiding the relaxed consistency
and non-uniform performance of the underlying RDMA network. These works generally focus
on transparently (or mostly-transparently [Ruan et al. 2020; Zhang et al. 2022]) porting existing
shared memory applications. We argue that this technique, either with purely software-based
virtualisation [Cai et al. 2018; Gouk et al. 2022; Ruan et al. 2020; Wang et al. 2020; Zhang et al. 2022],
or by extending hardware [Calciu et al. 2021], is unlikely to gain traction because the performance
will always be worse than an approach which takes into account the underlying memory network.

Other programming models have simply used RDMA to implement existing distributed system
abstractions. For example, both MPI [Message Passing Interface Forum 2023] and NCCL [NVIDIA
Corporation 2020] can use RDMA for inter-node communication. However, fundamentally, these
are message passing programming models with explicit send and receive primitives. While MPI
does support some remote memory accesses, this support is best seen as a zero-copy send/receive
mechanism where synchronisation is either coarse-grained and inflexible, or simply nonexistent.
While message-passing is well-suited for dataflow applications (e.g. machine learning and signal
processing) and highly parallel scale-out workloads (e.g. physical simulation), it is less useful
for workloads that exhibit data-dependent communication [Liu et al. 2021], such as transaction
processing or graph computations. In these applications, cross-node synchronisation is unavoidable
and unpredictable, so the ideal performance strategy shifts from simply avoiding synchronisation
to minimising contention, accelerating synchronisation use, and reducing data movement.

Compared to prior art, LOCO aims to build composable, reusable, and performant primitives for
complicated memory networks, suitable for irregular workloads. No such option currently exists in
the literature.

Verification. Our proofs have followed the declarative style [Raad et al. 2019; Stefanesco et al.
2024] enabling modular verification. rdmatso [Ambal et al. 2024] also includes an operational
model, which could form a basis for a program logic (e.g., [Bila et al. 2022; Lahav et al. 2023]),
ultimately enabling operational abstractions and proofs of refinement [Dalvandi and Dongol 2022].
Other modular approaches include modular proofs through separation logics [Jung et al. 2018],
but this additionally requires a separation logic encoding of the rdmawait memory model (and
an associated proof of soundness) before it can be applied to verify libraries such as LOCO. We
consider operational proofs and those involving separation logic as a topic for future work.
Nagasamudram et al. [2024] have verified, in Rocq, key properties of a coordination service

known as Derecho [Jha et al. 2018], which can be configured to run over RDMA. However, their
proofs start with a very high-level model called a shared-state table, which is an array of shared
variables (cf. Fig. 7). Unlike our work, these assumed shared state table semantics have not been
connected to any formal RDMA semantics. In future work, it would be interesting to connect our
work to middleware such as Derecho, ultimately leading to a fully verified RDMA application stack.

There is a rich literature of work around model checking under weak and persistent memory
[Abdulla et al. 2023; Kokologiannakis and Vafeiadis 2021] including recent works that tackle
refinement and linearisability [Golovin et al. 2025; Raad et al. 2024]. It would be interesting to know
whether these techniques can be extended to support rdmatso (and by extension rdmawait).

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 27

8 Conclusion

In this paper, we describe LOCO, a verified library for building composable and reusable objects
in network memory and its associated proof system Mowgli. Our results show that LOCO can
expose the full performance of underlying network memory to applications, while simultaneously
easing proof burden.

Acknowledgments

This work was partially funded by industry partner Genuen, which provides hardware validation
services using the harness described in Section B.2. Izraelevitz also privately contracted with this
company to assist with commercialization efforts of this harness. Ambal is supported by the EPSRC
grant EP/X037029/1 and Raad is supported by a UKRI fellowship MR/V024299/1, by the EPSRC grant
EP/X037029/1, and by VeTSS. Dongol and Chockler are supported by EPSRC grants EP/Y036425/1,
EP/X037142/1 and EP/X015149/1 and Royal Society grant IES\R1\221226. Dongol is additionally
supported by EPSRC grant EP/V038915/1 and VeTSS. Vafeiadis is supported by ERC Consolidator
Grant for the project “PERSIST” (grant agreement No. 101003349).

References

[n. d.]. The CloudLab Manual: Hardware. ([n. d.]). http://docs.cloudlab.us/hardware.html.
[n. d.]. RDMA core userspace libraries and daemons (rdma-core). ([n. d.]). https://github.com/linux-rdma/rdma-core.
[n. d.]. Scythe. ([n. d.]). https://github.com/PDS-Lab/Scythe.
[n. d.]. Sherman: A Write-Optimized Distributed B+Tree Index on Disaggregated Memory. ([n. d.]).

https://github.com/thustorage/Sherman.
[n. d.]. Yahoo! Cloud Serving Benchmark in C++. ([n. d.]). https://github.com/basicthinker/YCSB-C.
2014. InfiniBand™ Architecture Specification Release 1.2.1 Annex A17: RoCEv2. Technical Report Annex A17. InfiniBand™

Trade Association.
Martín Abadi and Leslie Lamport. 1991. The Existence of Refinement Mappings. Theor. Comput. Sci. 82, 2 (1991), 253–284.

https://doi.org/10.1016/0304-3975(91)90224-P
Parosh Aziz Abdulla, Mohamed Faouzi Atig, S. Krishna, Ashutosh Gupta, and Omkar Tuppe. 2023. Optimal Stateless Model

Checking for Causal Consistency. In Tools and Algorithms for the Construction and Analysis of Systems - 29th International
Conference, TACAS 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Paris, France, April 22-27, 2023, Proceedings, Part I (Lecture Notes in Computer Science), Sriram Sankaranarayanan and
Natasha Sharygina (Eds.), Vol. 13993. Springer, 105–125. https://doi.org/10.1007/978-3-031-30823-9_6

Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe, and Igor Zablotchi. 2019. The Impact of RDMA
on Agreement. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC ’19). Association
for Computing Machinery, New York, NY, USA, 409–418. https://doi.org/10.1145/3293611.3331601

Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe, Athanasios Xygkis, and Igor Zablotchi.
2020. Microsecond Consensus for Microsecond Applications. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 599–616. https://www.usenix.org/conference/osdi20/presentation/
aguilera

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining
for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2 (2014), 7:1–7:74. https://doi.org/10.1145/2627752

Ahmed Alquraan, Sreeharsha Udayashankar, Virendra Marathe, Bernardo Wong, and Samer Al-Kiswany. 2024. LoLKV: the
logless, line the logless, linearizable, RDMA-based key-value storage system arizable, RDMA-based key-value storage
system. In Proceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI’24). USENIX
Association, USA, Article 3, 14 pages.

Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad. 2024. Semantics of Remote
Direct Memory Access: Operational and Declarative Models of RDMA on TSO Architectures. Proc. ACM Program. Lang.
8, OOPSLA2 (2024), 1982–2009. https://doi.org/10.1145/3689781

Andrew W. Appel and Sandrine Blazy. 2007. Separation Logic for Small-Step cminor. In Theorem Proving in Higher Order
Logics, 20th International Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Proceedings (Lecture
Notes in Computer Science), Klaus Schneider and Jens Brandt (Eds.), Vol. 4732. Springer, 5–21. https://doi.org/10.1007/978-
3-540-74591-4_3

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1007/978-3-031-30823-9_6
https://doi.org/10.1145/3293611.3331601
https://www.usenix.org/conference/osdi20/presentation/aguilera
https://www.usenix.org/conference/osdi20/presentation/aguilera
https://doi.org/10.1145/2627752
https://doi.org/10.1145/3689781
https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1007/978-3-540-74591-4_3

28 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. 2015. Rack-Scale In-Memory Join Processing
using RDMA. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD ’15).
Association for Computing Machinery, New York, NY, USA, 1463–1475. https://doi.org/10.1145/2723372.2750547

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber. 2011. Mathematizing C++ concurrency. In Proceedings
of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA,
January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 55–66. https://doi.org/10.1145/1926385.1926394

Eleni Vafeiadi Bila, Brijesh Dongol, Ori Lahav, Azalea Raad, and JohnWickerson. 2022. View-Based Owicki–Gries Reasoning
for Persistent x86-TSO. In Programming Languages and Systems, Ilya Sergey (Ed.). Springer International Publishing,
Cham, 234–261.

Benjamin Brock, Aydın Buluç, and Katherine Yelick. 2019. BCL: A Cross-Platform Distributed Data Structures Library. In
Proceedings of the 48th International Conference on Parallel Processing (ICPP ’19). Association for Computing Machinery,
New York, NY, USA, Article 102, 10 pages. https://doi.org/10.1145/3337821.3337912

Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo,
and Sheng Wang. 2018. Efficient distributed memory management with RDMA and caching. Proc. VLDB Endow. 11, 11
(jul 2018), 1604–1617. https://doi.org/10.14778/3236187.3236209

Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh Kolli. 2021.
Rethinking software runtimes for disaggregated memory. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS ’21). Association for Computing
Machinery, New York, NY, USA, 79–92. https://doi.org/10.1145/3445814.3446713

J. Bradley Chen, Anita Borg, and Norman P. Jouppi. 1992. A simulation based study of TLB performance. In Proceedings of
the 19th Annual International Symposium on Computer Architecture (ISCA ’92). Association for Computing Machinery,
New York, NY, USA, 114–123. https://doi.org/10.1145/139669.139708

Luca Corradini, Dragan Maksimovic, Paolo Mattavelli, and Regan Zane. 2015. Digital control of high-frequency switched-mode
power converters. John Wiley & Sons.

Sadegh Dalvandi and Brijesh Dongol. 2022. Implementing and verifying release-acquire transactional memory in C11. Proc.
ACM Program. Lang. 6, OOPSLA2 (2022), 1817–1844. https://doi.org/10.1145/3563352

Andrei Marian Dan, Patrick Lam, Torsten Hoefler, and Martin Vechev. 2016. Modeling and Analysis of Remote Memory
Access Programming. SIGPLAN Not. 51, 10 (oct 2016), 129–144. https://doi.org/10.1145/3022671.2984033

Hariharan Devarajan, Anthony Kougkas, Keith Bateman, and Xian-He Sun. 2020. HCL: Distributing Parallel Data Structures
in Extreme Scales. In 2020 IEEE International Conference on Cluster Computing (CLUSTER). 248–258. https://doi.org/10.
1109/CLUSTER49012.2020.00035

Brijesh Dongol, Radha Jagadeesan, James Riely, and Alasdair Armstrong. 2018. On abstraction and compositionality for
weak-memory linearisability. In Verification, Model Checking, and Abstract Interpretation - 19th International Conference,
VMCAI 2018, Los Angeles, CA, USA, January 7-9, 2018, Proceedings (Lecture Notes in Computer Science), Isil Dillig and Jens
Palsberg (Eds.), Vol. 10747. Springer, 183–204. https://doi.org/10.1007/978-3-319-73721-8_9

Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro. 2014. FaRM: Fast Remote Memory.
In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation (NSDI’14). USENIX
Association, Berkeley, CA, USA, 401–414. http://dl.acm.org/citation.cfm?id=2616448.2616486

Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann, Alex Shamis, Anirudh Badam,
and Miguel Castro. 2015. No Compromises: Distributed Transactions with Consistency, Availability, and Performance.
In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA, 54–70.
https://doi.org/10.1145/2815400.2815425

Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter Sewell.
2016. Modelling the ARMv8 architecture, operationally: concurrency and ISA. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 608–621. https://doi.org/10.1145/2837614.2837615

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay,
Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and
Timothy S. Woodall. 2004. Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation. In
Proceedings, 11th European PVM/MPI Users’ Group Meeting. Budapest, Hungary, 97–104.

Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes, Hany Morsy, Rohit Puri, Mohammad
Riftadi, Ashmitha Jeevaraj Shetty, Jingyi Yang, et al. 2024. Rdma over ethernet for distributed training at meta scale. In
Proceedings of the ACM SIGCOMM 2024 Conference. 57–70.

Vasilis Gavrielatos, Antonios Katsarakis, Vijay Nagarajan, Boris Grot, and Arpit Joshi. 2020. Kite: efficient and available
release consistency for the datacenter. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’20). Association for Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.
1145/3332466.3374516

https://doi.org/10.1145/2723372.2750547
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3337821.3337912
https://doi.org/10.14778/3236187.3236209
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1145/139669.139708
https://doi.org/10.1145/3563352
https://doi.org/10.1145/3022671.2984033
https://doi.org/10.1109/CLUSTER49012.2020.00035
https://doi.org/10.1109/CLUSTER49012.2020.00035
https://doi.org/10.1007/978-3-319-73721-8_9
http://dl.acm.org/citation.cfm?id=2616448.2616486
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/3332466.3374516
https://doi.org/10.1145/3332466.3374516

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 29

Pavel Golovin, Michalis Kokologiannakis, and Viktor Vafeiadis. 2025. RELINCHE: Automatically Checking Linearizability
under RelaxedMemory Consistency. Proc. ACM Program. Lang. 9, POPL (2025), 2090–2117. https://doi.org/10.1145/3704906

Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022. Direct Access, High-Performance Memory
Disaggregation with DirectCXL. In 2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association,
Carlsbad, CA, 287–294. https://www.usenix.org/conference/atc22/presentation/gouk

Richard L Graham, Timothy S Woodall, and Jeffrey M Squyres. 2006. Open MPI: A flexible high performance MPI. In Parallel
Processing and Applied Mathematics: 6th International Conference, PPAM 2005, Poznań, Poland, September 11-14, 2005,
Revised Selected Papers 6. Springer, 228–239.

R. Gupta, V. Tipparaju, J. Nieplocha, and D. Panda. 2002. Efficient barrier using remote memory operations on VIA-based
clusters. In Proceedings. IEEE International Conference on Cluster Computing. 83–90. https://doi.org/10.1109/CLUSTR.2002.
1137732

Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat Combining and the Synchronization-Parallelism Tradeoff.
In Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’10). Santorini, Greece,
355–364.

Maurice Herlihy and Jeannette M. Wing. 1990a. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972

Maurice P. Herlihy and Jeannette M. Wing. 1990b. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and Systems 12, 3 (July 1990), 463–492.

Joseph Izraelevitz, Gaukas Wang, Rhett Hanscom, Kayli Silvers, Tamara Silbergleit Lehman, Gregory Chockler, and Alexey
Gotsman. 2023. Acuerdo: Fast Atomic Broadcast over RDMA. In Proceedings of the 51st International Conference
on Parallel Processing (ICPP ’22). Association for Computing Machinery, New York, NY, USA, Article 59, 11 pages.
https://doi.org/10.1145/3545008.3545041

Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia Song, Edward Tremel, Robbert Van Renesse,
Sydney Zink, and Kenneth P. Birman. 2019. Derecho: Fast State Machine Replication for Cloud Services. ACM Trans.
Comput. Syst. 36, 2, Article 4 (April 2019), 49 pages. https://doi.org/10.1145/3302258

Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Mae Milano, Weijia Song, Edward Tremel, Robbert van Renesse, Sydney
Zink, and Kenneth P. Birman. 2018. Derecho: Fast State Machine Replication for Cloud Services. ACM Trans. Comput.
Syst. 36, 2 (2018), 4:1–4:49. https://doi.org/10.1145/3302258

Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia Song, Edward Tremel, Sydney Zink, Ken Birman,
and Robbert Van Renesse. 2017. Building Smart Memories and High-speed Cloud Services for the Internet of Things
with Derecho. In Proceedings of the 2017 Symposium on Cloud Computing (SoCC ’17). ACM, New York, NY, USA, 632–632.
https://doi.org/10.1145/3127479.3134597 Extended version available from www.cs.cornell.edu/ken/derecho-tocs.pdf.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA Efficiently for Key-value Services. In Proceedings
of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA, 295–306. https://doi.org/10.1145/
2619239.2626299

Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros, and Konstantinos Sagonas. 2015. Turning Centralized
Coherence and Distributed Critical-Section Execution on their Head: A New Approach for Scalable Distributed Shared
Memory. In Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing
(HPDC ’15). Association for Computing Machinery, New York, NY, USA, 3–14. https://doi.org/10.1145/2749246.2749250

Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. 1994. TreadMarks: distributed shared memory on
standard workstations and operating systems. In Proceedings of the USENIX Winter 1994 Technical Conference on USENIX
Winter 1994 Technical Conference (WTEC’94). USENIX Association, USA, 10.

Michalis Kokologiannakis and Viktor Vafeiadis. 2021. GenMC: A Model Checker for Weak Memory Models. In Computer
Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I (Lecture
Notes in Computer Science), Alexandra Silva and K. Rustan M. Leino (Eds.), Vol. 12759. Springer, 427–440. https:
//doi.org/10.1007/978-3-030-81685-8_20

Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu, Mahmoud Elhaddad, Shachar Raindel, Jitendra Padhye, Alvin R Lebeck,
and Danyang Zhuo. 2023. Understanding {RDMA} microarchitecture resources for performance isolation. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23). 31–48.

Ori Lahav, Brijesh Dongol, and Heike Wehrheim. 2023. Rely-Guarantee Reasoning for Causally Consistent Shared Memory.
In Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings,
Part I (Lecture Notes in Computer Science), Constantin Enea and Akash Lal (Eds.), Vol. 13964. Springer, 206–229. https:
//doi.org/10.1007/978-3-031-37706-8_11

https://doi.org/10.1145/3704906
https://www.usenix.org/conference/atc22/presentation/gouk
https://doi.org/10.1109/CLUSTR.2002.1137732
https://doi.org/10.1109/CLUSTR.2002.1137732
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3545008.3545041
https://doi.org/10.1145/3302258
https://doi.org/10.1145/3302258
https://doi.org/10.1145/3127479.3134597
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2749246.2749250
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-031-37706-8_11
https://doi.org/10.1007/978-3-031-37706-8_11

30 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in
C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 618–632. https://doi.org/
10.1145/3062341.3062352

Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng. 2023. ROLEX: A Scalable RDMA-oriented Learned
Key-Value Store for Disaggregated Memory Systems. In 21st USENIX Conference on File and Storage Technologies (FAST
23). USENIX Association, Santa Clara, CA, 99–114. https://www.usenix.org/conference/fast23/presentation/li-pengfei

linux-rdma. 2018. RDMA core. (2018). https://github.com/linux-rdma/rdma-core/ (Accessed: Jul. 2025).
Feilong Liu, Claude Barthels, Spyros Blanas, Hideaki Kimura, and Garret Swart. 2021. Beyond MPI: New Communication

Interfaces for Database Systems and Data-Intensive Applications. SIGMOD Rec. 49, 4 (March 2021), 12–17. https:
//doi.org/10.1145/3456859.3456862

Xu Liu and John Mellor-Crummey. 2014. A tool to analyze the performance of multithreaded programs on NUMA
architectures. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’14). Association for Computing Machinery, New York, NY, USA, 259–272. https://doi.org/10.1145/2555243.2555271

Redis Ltd. 2021. Redis v6.0.16. (2021). https://github.com/redis/redis/releases/tag/6.0.16.
Redis Ltd. 2024. Memtier v2.1.2. (2024). https://github.com/RedisLabs/memtier_benchmark/releases/tag/2.1.2.
Kai Lu, Siqi Zhao, Haikang Shan, Qiang Wei, Guokuan Li, Jiguang Wan, Ting Yao, Huatao Wu, and Daohui Wang. 2024.

Scythe: A Low-latency RDMA-enabled Distributed Transaction System for Disaggregated Memory. ACM Trans. Archit.
Code Optim. 21, 3, Article 57 (Sept. 2024), 26 pages. https://doi.org/10.1145/3666004

Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen, and Thomas
Moscibroda. 2018. {Multi-Path} transport for {RDMA} in datacenters. In 15th USENIX symposium on networked systems
design and implementation (NSDI 18). 357–371.

Zoltan Majo and Thomas R. Gross. 2017. A Library for Portable and Composable Data Locality Optimizations for NUMA
Systems. ACM Trans. Parallel Comput. 3, 4, Article 20 (mar 2017), 32 pages. https://doi.org/10.1145/3040222

Message Passing Interface Forum. 2023. MPI: A Message-Passing Interface Standard Version 4.1. https://www.mpi-forum.org/
docs/mpi-4.1/mpi41-report.pdf

Adam Morrison and Yehuda Afek. 2013. Fast Concurrent Queues for x86 Processors. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’13). ACM, New York, NY, USA, 103–112.
https://doi.org/10.1145/2442516.2442527

Ramana Nagasamudram, Lennart Beringer, Ken Birman, Mae Milano, and David A. Naumann. 2024. Verifying a C
Implementation of Derecho’s Coordination Mechanism Using VST and Coq. In NASA Formal Methods - 16th International
Symposium, NFM 2024, Moffett Field, CA, USA, June 4-6, 2024, Proceedings (Lecture Notes in Computer Science), Nathaniel
Benz, Divya Gopinath, and Nija Shi (Eds.), Vol. 14627. Springer, 99–117. https://doi.org/10.1007/978-3-031-60698-4_6

J. Nieplocha, R.J. Harrison, and R.J. Littlefield. 1994. Global Arrays: a portable "shared-memory" programming model for
distributed memory computers. In Supercomputing ’94:Proceedings of the 1994 ACM/IEEE Conference on Supercomputing.
340–349. https://doi.org/10.1109/SUPERC.1994.344297

NVIDIA Corporation. 2020. NVIDIA Collective Communication Library (NCCL) Documentation. (2020). https://docs.nvidia.
com/deeplearning/nccl/user-guide/docs/index.html

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (Lecture
Notes in Computer Science), Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.), Vol. 5674.
Springer, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Geoff Pike and Jyrki Alakuijala. [n. d.]. Introducing CityHash. ([n. d.]).
https://opensource.googleblog.com/2011/04/introducing-cityhash.html.

Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance State Machine Replication on RDMA Networks. In
Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing (HPDC ’15).
ACM, New York, NY, USA, 107–118. https://doi.org/10.1145/2749246.2749267

Azalea Raad, Marko Doko, Lovro Rozic, Ori Lahav, and Viktor Vafeiadis. 2019. On library correctness under weak memory
consistency: specifying and verifying concurrent libraries under declarative consistency models. Proc. ACM Program.
Lang. 3, POPL (2019), 68:1–68:31. https://doi.org/10.1145/3290381

Azalea Raad, Ori Lahav, John Wickerson, Piotr Balcer, and Brijesh Dongol. 2024. Intel PMDK Transactions: Specification,
Validation and Concurrency. In Programming Languages and Systems - 33rd European Symposium on Programming, ESOP
2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City,
Luxembourg, April 6-11, 2024, Proceedings, Part II (Lecture Notes in Computer Science), Stephanie Weirich (Ed.), Vol. 14577.
Springer, 150–179. https://doi.org/10.1007/978-3-031-57267-8_6

R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. 2007. A Remote Direct Memory Access Protocol Specification. Technical
Report RFC 5040. Internet Engineering Task Force.

https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://www.usenix.org/conference/fast23/presentation/li-pengfei
https://github.com/linux-rdma/rdma-core/
https://doi.org/10.1145/3456859.3456862
https://doi.org/10.1145/3456859.3456862
https://doi.org/10.1145/2555243.2555271
https://github.com/redis/redis/releases/tag/6.0.16
https://github.com/RedisLabs/memtier_benchmark/releases/tag/2.1.2
https://doi.org/10.1145/3666004
https://doi.org/10.1145/3040222
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1007/978-3-031-60698-4_6
https://doi.org/10.1109/SUPERC.1994.344297
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/2749246.2749267
https://doi.org/10.1145/3290381
https://doi.org/10.1007/978-3-031-57267-8_6

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 31

Yufei Ren, Xingbo Wu, Li Zhang, Yandong Wang, Wei Zhang, Zijun Wang, Michel Hack, and Song Jiang. 2017. iRDMA:
Efficient Use of RDMA in Distributed Deep Learning Systems. In 2017 IEEE 19th International Conference on High
Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS). 231–238. https://doi.org/10.1109/HPCC-SmartCity-
DSS.2017.30

Zhenyuan Ruan, Shihang Li, Kaiyan Fan, Marcos K. Aguilera, Adam Belay, Seo Jin Park, and Malte Schwarzkopf. 2023a.
Unleashing True Utility Computing with Quicksand. In Proceedings of the 19th Workshop on Hot Topics in Operating
Systems (HOTOS ’23). Association for Computing Machinery, New York, NY, USA, 196–205. https://doi.org/10.1145/
3593856.3595893

Zhenyuan Ruan, Seo Jin Park, Marcos K. Aguilera, Adam Belay, and Malte Schwarzkopf. 2023b. Nu: Achieving Microsecond-
Scale Resource Fungibility with Logical Processes. In 20th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 23). USENIX Association, Boston, MA, 1409–1427. https://www.usenix.org/conference/nsdi23/presentation/
ruan

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. 2020. AIFM: High-Performance, Application-
Integrated Far Memory. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 315–332. https://www.usenix.org/conference/osdi20/presentation/ruan

Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis. 2024. Specifying and Verifying Persistent Libraries. In Programming
Languages and Systems - 33rd European Symposium on Programming, ESOP 2024, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings,
Part II (Lecture Notes in Computer Science), Stephanie Weirich (Ed.), Vol. 14577. Springer, 185–211. https://doi.org/10.1007/
978-3-031-57267-8_8

Lingjia Tang, Jason Mars, Xiao Zhang, Robert Hagmann, Robert Hundt, and Eric Tune. 2013. Optimizing Google’s warehouse
scale computers: The NUMA experience. In 2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA). 188–197. https://doi.org/10.1109/HPCA.2013.6522318

Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen, Michael D. Bond, Ravi Netravali, Miryung
Kim, and Guoqing Harry Xu. 2020. Semeru: A Memory-Disaggregated Managed Runtime. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX Association, 261–280. https://www.usenix.org/
conference/osdi20/presentation/wang

Jing Wang, Chao Li, Yibo Liu, Taolei Wang, Junyi Mei, Lu Zhang, Pengyu Wang, and Minyi Guo. 2023a. Fargraph+:
Excavating the parallelism of graph processing workload on RDMA-based far memory system. J. Parallel and Distrib.
Comput. 177 (2023), 144–159. https://doi.org/10.1016/j.jpdc.2023.02.015

Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-Optimized Distributed B+Tree Index on Disaggregated
Memory. In Proceedings of the 2022 International Conference on Management of Data (SIGMOD ’22). Association for
Computing Machinery, New York, NY, USA, 1033–1048. https://doi.org/10.1145/3514221.3517824

Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao Feng, Ke Cheng,
Xiongfei Geng, et al. 2023b. {SRNIC}: A scalable architecture for {RDMA}{NICs}. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23). 1–14.

Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lintao Zhang, and Lidong Zhou. 2019. Fast Distributed Deep Learning
over RDMA. In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). Association for Computing Machinery,
New York, NY, USA, Article 44, 14 pages. https://doi.org/10.1145/3302424.3303975

Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2019. Orion: A Distributed File System for Non-Volatile Main Memories
and RDMA-Capable Networks. In 17th USENIX Conference on File and Storage Technologies (FAST ’19). USENIXAssociation.

Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. FileMR: Rethinking RDMA Networking for Scalable Persistent
Memory. In Proceedings of the 17th USENIX Conference on Networked Systems Design and Implementation (NSDI’20).
USENIX Association.

Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong, Sebastian Angel, Ang Chen, Vincent Liu, and
Boon Thau Loo. 2022. Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT. In Proceedings
of the 2022 International Conference on Management of Data (SIGMOD ’22). Association for Computing Machinery, New
York, NY, USA, 1345–1359. https://doi.org/10.1145/3514221.3517856

Yili Zheng, Amir Kamil, Michael B. Driscoll, Hongzhang Shan, and Katherine Yelick. 2014. UPC++: A PGAS Extension for
C++. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium. 1105–1114. https://doi.org/10.1109/
IPDPS.2014.115

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar
Raindel, Mohamad Haj Yahia, and Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.30
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.30
https://doi.org/10.1145/3593856.3595893
https://doi.org/10.1145/3593856.3595893
https://www.usenix.org/conference/nsdi23/presentation/ruan
https://www.usenix.org/conference/nsdi23/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
https://doi.org/10.1007/978-3-031-57267-8_8
https://doi.org/10.1007/978-3-031-57267-8_8
https://doi.org/10.1109/HPCA.2013.6522318
https://www.usenix.org/conference/osdi20/presentation/wang
https://www.usenix.org/conference/osdi20/presentation/wang
https://doi.org/10.1016/j.jpdc.2023.02.015
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.1145/3302424.3303975
https://doi.org/10.1145/3514221.3517856
https://doi.org/10.1109/IPDPS.2014.115
https://doi.org/10.1109/IPDPS.2014.115

32 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

A Further Details of LOCO’s Design

Our Library of Composable Objects (LOCO) is functionally an extension of the normal shared
memory programming model, that is, an object-oriented paradigm, onto the weak memory network
of RDMA. LOCO provides the ability to encapsulate network memory access within special objects,
which we call channels. Channels are similar to traditional shared memory objects, in that they
export methods, control their own memory and members, and manage their synchronisation.
However, unlike traditional shared memory objects, a single channel may use memory across
multiple nodes, including both network-accessible memory and private local memory. Examples of
some channel types (classes) in LOCO include cross-node mutexes, barriers, queues, and maps.

A.1 Channel Overview

A LOCO application will usually consist of many channels (objects) of many different channel
types (classes). In addition, each channel can itself instantiate member sub-channels (for instance, a
key-value store might include several mutexes as sub-channels to synchronise access to its contents).
We argue that such a system of channels makes it significantly easier to develop applications on
network memory, without sacrificing performance.

Figure 18a shows our implementation of a barrier channel, based on [Gupta et al. 2002], using a
SST sub-channel. As with a traditional shared memory barrier, it is used synchronise all participants
at a certain point in execution. For each use of the barrier, participants increment their local, private,
count variable, then broadcast the new value to others using their register in the SST. They then
wait locally to leave the barrier until all participants have a count in the SST not less than their
own.

A.2 Channel Setup

Figure 18b shows a complete example LOCO application: a microbenchmark which repeatedly
waits on the barrier (Line 59) and measures its latency. At line 54, we construct the manager object
from a set of (ID, hostname) pairs. The manager establishes connections with peers and mediates
access to per-node resources: peer connections, a shared completion queue, and network-accessible
memory.
The manager is then used to construct channel endpoints, in this case the barrier and its sub-

channels (Line 55). Note that the barrier has a name ”bar”, which must match the name of the
remote barrier endpoints to complete the connection. We use a ‘/’ character to denote a sub-channel
relationship (e.g., the full name of the SST in the barrier object is ”bar/sst”, with component
owned_var s named ”bar/sst/ov0” etc.), and a ‘.’ character to denote a component memory region.

When a channel endpoint is constructed, it initialises its local state including subchannels, creates
local memory regions, and indicates by name what memory regions it expects other participants to
provide. Then, it sends a join message (Line 45) to each peer with the channel name and the list of
memory regions it expects that peer to provide.
When a peer receives a join message, it first checks if a channel endpoint with the same name

exists locally, and ignores the message if not (in other words, peers may not participate in all
channels). If it finds a matching endpoint, it verifies its allocated memory regions match those
requested, and returns a connect message containing metadata necessary to access the requested
regions. Channels can also register callbacks which run when join and/or connect messages are
received; these are used to create per-participant sub-channels or memory regions.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 33

19 class barrier : public loco:: channel {
20 unsigned count ,num_nodes;
21 loco::sst_var <unsigned > sst;
22 public:
23 void waiting () {
24 // complete all outstanding RDMA

operations
25 mgr()::fence();
26 count ++; // increment our counter
27 sst.store_mine(count);
28 sst.push_broadcast (); //and push
29 bool waiting = true;
30 while(waiting){ // wait for others
31 waiting = false; // to match
32 for (auto& row : sst) {
33 if (row.load() < count){
34 waiting = true;
35 break ;}
36 }
37 }
38 }
39 barrier(channel ∗ parent ,
40 string name ,manager& cm,int num):
41 channel(parent , name , cm,
42 channel :: expect_num(num -1)),
43 sst(this ,"sst",cm)){
44 count =0; num_nodes=num;
45 channel ::join();
46 }
47 };

(a) Complete C++ code for the network barrier, a

simple channel object.

48 int main(int argc , char ∗ ∗ argv) {
49 map <uint32_t , string > hosts;
50 int node_id , num_nodes;
51 loco:: parse_hosts (&hosts ,
52 &node_id ,&num_nodes ,argv [1]);
53 vector <timespec > lats;
54 loco:: manager cm(ip_addrs , node_id);
55 loco:: barrier bar("bar", cm,

num_nodes);
56 cm.wait_for_ready ();
57 for(int i=0; i<TEST_ITERS; ++i){
58 timespec t0 = clock_now ();
59 bar.waiting ();
60 timespec t1 = clock_now ();
61 lats.push_back(t1 - t0);
62 }
63 cout <<"Avg␣latency:"<<
64 accumulate(lats.begin(),
65 lats.end() ,0.0))/lats.size();
66 }

(b) A simple (complete) LOCO application mea-

suring barrier latency.

Fig. 18. LOCO barrier code

2 3 4 5 6 7
Node count

0

50

100

150

200

250

Th
ro

ug
hp

ut
[K

op
s/

se
c]

Single lock throughput
LOCO
OpenMPI

2 4 6 8 10 12 14 16
Threads/ranks per node

500

1000

1500

Th
ro

ug
hp

ut
[K

op
s/

se
c]

Transactional locking throughput
LOCO (3 nodes)
LOCO (5 nodes)
LOCO (7 nodes)
OpenMPI (3 nodes)
OpenMPI (5 nodes)
OpenMPI (7 nodes)

Fig. 19. Throughput of single-lock and transactions in OpenMPI and LOCO.

B Further LOCO-based Applications

B.1 Transactional Locking

In this section, we compare the performance of LOCO to the RDMA APIs provided by Open-
MPI [Gabriel et al. 2004] on tasks involving contended synchronisation. We compare against
OpenMPI version 5.0.5, using RoCE support provided by the PML/UCX backend. Results for both
benchmarks are shown in Figure 19 (geomean of five 20-second runs).
First, we measured the throughput of a contended single-lock critical section (lock-protected

read-modify-write) at different node counts, with one rank/thread per node. Here, OpenMPI has a
consistent advantage, likely due to extensive optimisation and a more managed environment.
Then, we measured the throughput of a transactional critical section, which acquires the locks

corresponding to two different accounts (array entries), and transfers a randomly generated amount
between them. We use 100 million accounts. For intra-node scaling, LOCO creates multiple threads,

34 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

Fig. 20. Schematic of the system modeled by the power_controller channel. Solid arrows represent LOCO

owned_vars, and dashed arrows represent electrical connections. dN represents the duty cycle parameter

used to control converter N, and VN represents the output voltage at converter N.

while OpenMPI creates separate ranks (MPI processes), due to MPI’s limited support for multi-
threading within a rank.

For LOCO, we create an array of atomic_vars holding account values, striped across participants.
For OpenMPI, we distribute the accounts across 341 windows (symmetrically allocated regions of
remote memory, each associated with a single lock per rank); 341 is the maximum supported. To
ensure a fair comparison, LOCO uses at most 341 locks per thread.

LOCO outperforms OpenMPI on transactional locking, despite the fact that we use an equal num-
ber of locks and their lock performs better in isolation. We believe this is due to the tight coupling
between memory windows and locks in MPI: windows likely have a one-to-one correspondence
with RDMA memory regions in the backend, and performing operations on many small memory
regions is slower than large ones due to NIC caching structures [Kong et al. 2023]. LOCO avoids
this penalty by disassociating regions and locks in its object system, while also merging regions
into 1 GB huge pages in the backend.

B.2 Distributed DC/DC Converter System

As an additional application of LOCO, we implemented a model of a hardware control loop which
exploits its low latency.

B.2.1 SystemDesign. An additional application channel we have implemented is the power_controller,
a real-time simulation of a distributed DC/DC converter system controlled by a discrete-time control
loop [Corradini et al. 2015]. The simulation (Figure 20) consists of a single machine which acts
as a controller, and an arbitrary number of machines simulating the physical characteristics of a
converter. The role of the controller is to regulate the duty cycles (𝑑) of the converters, which are
supplied with a steady input DC voltage, to produce a target output voltage (𝑉𝑟𝑒 𝑓). The converters
return voltage values (𝑉) which are used to calculate the next setting of their duty cycles, closing
the control loop.
The power_controller channel consists of two arrays of owned_vars representing the duty

cycle (owned by the controller) and output voltage (owned by the converter) for each converter.
The participating machines run fixed-time loops: each loop iteration at a converter calculates a
new simulated 𝑉 and pushes it to the controller, while each iteration at the controller calculates a
new 𝑑 for all controllers based on their most recent 𝑑 and 𝑉 values. The overall output voltage of
the system at each step (as seen by the controller) is the sum of all converters’ most recent output
voltage.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 35

10

15

20

25

30
40 s period 60 s period

0 1 2 3 4 5
10

15

20

25

30
80 s period

0 1 2 3 4 5

100 s period

Time [s]

Ou
tp

ut
 V

ol
ta

ge
 [V

]

Fig. 21. Output voltage for the DC/DC converter simulation at various control loop frequencies.

Network memory is a good fit for this application because it is highly sensitive to network
latency; with the parameters we have chosen, the output will only converge if latency of the control
and feedback messages is consistently less than 40 𝜇s. This requirement would be difficult to meet
with traditional message-passing protocols: while a protocol such as UDP can easily achieve this
latency on an uncontended network, it would be difficult to manage the scheduling jitter, copying,
and cache contention in the software network protocol stack.
An extension of this control loop harness was developed in LOCO for validating hardware

components such as the power controller and converters within partially simulated environments
(hardware-in-loop testing). The system is currently in beta testing for production use, with expected
commercial release later this year.

B.2.2 Evaluation. To evaluate whether LOCO meets the latency requirements of this system, we
instantiated a cluster with one controller and 20 converters and measured the output voltage over
time at various loop periods. The effect of changing the loop period is to simulate higher link
latency, since we cannot increase the latency of the RDMA link. The loop period at the converters
is fixed at 10 𝜇s to approximate the continuous nature of their transfer function. We ran each
simulation for 5 seconds.
The system parameters are selected to maintain a stable output voltage with a controller loop

period of 40 𝜇s or lower. The increasing instability in the output resulting from increasing the loop
period past this value is clearly visible in Figure 21. The series with period greater than 40 𝜇s also
exhibit large transients at simulation start. These are mostly invisible on the plots due to their brief
duration, but would be unacceptable in a real system.

C LOCO Backend

In this section, we briefly describe key features of the LOCO RDMA backend, which we have tuned
extensively to expose the full performance of RDMA to LOCO applications (Section 6.2).

The LOCO backend uses the libibverbs library for RDMA communication, and the librdmacm
library to manage RDMA connections. Both of these libraries are components of the Linux
rdma − core project [rdm [n. d.]]. LOCO currently supports only RoCE [rdm 2014] as a link layer,
although the only element missing for InfiniBand support is an implementation of the connection
procedure. The current design assumes a reliable, static network of IP-addressable peers specified
at application startup (the hostnames map declared at line 50 of Figure 18b).

36 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

Fig. 22. Initiating and monitoring the progress of an RDMA operation in LOCO. If the application does not

monitor the progress of the operation by registering the WRIDs returned in step 4 with an ack_key (step
5), then steps 7 and 8 do not occur. In addition, if the operation is already complete before the ack_key is
registered (step 6 occurs before step 5), the WRIDs will not be inserted into the ack_key’s internal set, and
step 7 will not occur.

C.1 RDMA Operations and Completions

The most optimized portion of the backend is support for initiating RDMA operations and moni-
toring their progress, shown in Figure 22.

C.1.1 Initiating Operations. Applications submit operations to the backend using an rdma_op
object which describes an operation, the relevant local memory, and one or more remote targets
for the operation (in the case of writes; reads and atomics are semantically restricted to a single
target). Encapsulating this information in a structure allows channels which are used to perform the
same operation repeatedly (e.g. the rows of the SST used in the barrier) to memoize the operation
description and simply pass the same object to the backend each time a new operation is initiated.
To reduce contention in multi-threaded applications, we create a new queue pair (QP) for each

thread performing RDMA operations. These QPs are allocated “lazily,” that is, they are created the
first time that a thread calls into the backend to perform an operation. Using multiple QPs means
that operations from different threads are not ordered with respect to each other, as described in
Section C.2.

C.1.2 Monitoring Operation Progress. As mentioned above, Once an operation is posted to a QP,
the backend returns a bitset to the user representing one or more Work Request IDs (WRIDs), 64-bit
integers attached to individual RDMA operations to identify them throughout their lifetime. We
use a single libibverbs completion queue (CQ), monitored by a dedicated polling thread, to track
the status of outstanding operations.
WRIDs increase monotonically and are shared across the local node. The tail index of the

queue tracks the oldest outstanding WRID, and the head tracks the most recently allocated WRID.
WRIDs are mapped to slots in the WRID window by calculating wrid%WINDOW_SIZE. New WRIDs
are allocated by performing an atomic fetch-and-add on the head index of the window. If some
operations corresponding to the allocated slots are still outstanding from the previous “lap” (i.e., if
(head − tail) > WINDOW_SIZE), the allocator blocks until those operations complete. We found

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 37

that, as long as the window is sufficiently large (our evaluation uses 64K slots), this blocking only
occurs if the thread count exceeds the hardware core count, likely due to the polling thread being
descheduled by the OS.

The polling thread dequeues batches of completed operations from the CQ, and, after checking
for errors, applies them to the WRID window. Each slot corresponding to a WRID in the batch is
marked complete, as described below. In addition, if the batch contains the operation corresponding
to the tail, the polling thread finds the new oldest outstanding operation, and updates the tail to
point to that slot.

If the application wishes to monitor the progress of some RDMA operations, it creates an ack_key
object and “attaches” it to the WRIDs for those operations. The ack_key contains a WRID bitset
supporting atomic insertion and removal. When the ack_key is created, it accesses the WRID
window to determine the status of each WRID in the input set. If the tail is greater than a given
WRID, or if the slot for that WRID is already marked complete, the ack_key takes no action,
avoiding any ordering requirement between an operation completing and registering it with an
ack_key. Otherwise, the ack_key appends a pointer to itself to the queue slot, and inserts the
WRID into its internal bitset.

When the polling thread marks a slot complete, it iterates over the attached list of ack_key s
and clears the bit corresponding to that slot’s WRID in each one’s internal bitset. This is done
atomically with respect to the registration process described above. Thus, on the application side,
checking whether the operations attached to an ack_key are complete simply consists of checking
whether the internal bitset is all zeroes, avoiding any explicit synchronization with the polling
thread.

C.2 Fences and Memory Ordering

RDMA’s specification of memory ordering is weak and unintuitive. To resolve these issues, we
adopt the solution suggested by the specification: completion of a read operation guarantees that
all earlier writes on that QP have been both completed and placed, meaning that any read acts as a
global visibility fence for a given QP [Recio et al. 2007].
LOCO provides the option to add such a fence to any RDMA operation by appending a zero-

length read, although it is only necessary when the application needs to wait until a write is globally
visible, for instance when performing a write followed by a mutex release. If a fence is requested, it
“takes over” the WRID of the fenced operation, and we do not request a completion for the fenced
operation, making the fence transparent to the ack_key mechanism.

C.3 Local Scalability

LOCO implements multiple features aimed at increasing the scalability of performing RDMA
operations across multiple local threads. First, each thread in a LOCO application uses a private set
of Queue Pairs (one RDMA communication channel per peer), to avoid unnecessary synchronisation
when multiple threads perform RDMA operations simultaneously. Second, all completions are
delivered to a single completion queue, which is monitored by a dedicated polling thread, in order
to avoid contention on the completion queue.

Application code can monitor the progress of one or more operations by registering an ack_key
object (modelled as work identifiers “𝑑”) with the polling thread, which provides APIs for polling
and waiting on completion of the operation. Internally, the ack_key is a lock-free bitset with
bits mapped to in-progress operations. As operations complete, the polling thread clears the
corresponding bits, so that checking for completion of an ack_key’s registered operations simply
consists of testing whether the internal bitset is equal to zero (i.e., empty). This approach avoids

38 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

explicit synchronisation between the polling thread and application threads waiting for operations
to complete.

C.4 Network Memory Management

Another important service the backend provides is management of each node’s network memory.
Memory must be registered with libibverbs before it can be accessed remotely. Since registration
of a memory region incurs non-negligible latency, we aggregate all registered memory used by
LOCO channels into a series of 1GB huge pages, each of which corresponds to a single libibverbs
memory region. The named memory region objects constructed by channels each correspond to a
contiguous sub-range of one of these regions. Using huge pages reduces TLB utilisation, which can
have a significant performance impact on multithreaded applications [Chen et al. 1992].
In addition to memory regions explicitly created by channels, we found it useful to create a

primitive for allocating temporary chunks of network memory used as inputs and outputs of
channel methods, which we call mem_refs. We allocate of backing memory for these objects from
a per-thread pool of fixed-size block, which are in turn allocated from the larger pool of registered
memory described above.
Finally, LOCO also provides the capacity to allocate local memory regions backed by device

memory, which resides on the network card. RDMA accesses to device memory are faster than
those to system memory, since they are not required to traverse the PCIe bus to main memory.
However, since device memory is not coherent with main memory, it is mainly useful for holding
state exclusively accessed through the network, such as mutex state.

D LOCO Bugs Discovered (and Corrected)

The weak and asynchronous nature of the rdmawait model means that developing correct RDMA
programs is very difficult. During the course of our verification work, we discovered two critical
bugs in LOCO, meaning that neither of the expected safety properties held.

𝑥 = 0
𝑥 := 1
BARbal (𝑧) BARbal (𝑧) BARbal (𝑧)

𝑎 := 𝑥
𝑎 = 0 ✗ possible with bug

Fig. 23. Possible incorrect behaviour

with the buggy implementation

The first bug: the implementation of the barrier immedi-
ately notified every participating remote node that the barrier
was reached. While some RDMA orderings made sure the no-
tification would arrive after completion of previous RDMA
operations towards the same remote, it did not wait for opera-
tions towards other nodes, even participating ones. So instead
of doing a global synchronisation of a set of nodes, the pre-
vious buggy implementation is more akin to doing several
pairwise synchronisation of nodes. With this bug, examples such as Fig. 6 behave correctly, but
programs with three or more nodes could exhibit unwanted behaviours. For example, consider the
program in Fig. 23. Node 1 modifies some location 𝑥 on node 2, synchronises with nodes 2 and 3,
and then node 3 reads the location 𝑥 . We would expect node 3 to necessarily see the new value
of 𝑥 . However, with the buggy implementation, node 1 would immediately give the go-ahead to
node 3 before the location 𝑥 is modified, allowing node 3 to read the outdated value. In Section 4,
we present and prove the corrected version of the barrier.

The second bug: LOCO has an implementation of mixed-size writes using the notion of a guard
allowing transfer of data that cannot be read/written atomically by the CPU. In it, one byte
(called a guard) is reserved on each side of the data and the writer proceeds by: (1) updating the
leading guard to a fresh value; (2) writing the data; (3) updating the trailing guard to the value
of the leading guard. The required invariant for the reader is that if the values of the leading and
trailing guards match then the data is not corrupted. However, the buggy implementation of the

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 39

mixed-size read operation was to (1) read the leading guard; (2) read the data; (3) read the trailing
guard; then (4) return the data if the guards match. This could lead to the following interleaving:
𝑔𝐿 := 𝑘 → 𝑥1 := 𝑣1 → 𝑏𝐿 := 𝑔𝐿 → 𝑎1 := 𝑥1 → 𝑎2 := 𝑥2 → 𝑥2 := 𝑣2 → 𝑔𝑇 := 𝑘 → 𝑏𝑇 := 𝑔𝑇 , where
𝑔𝐿 and 𝑔𝑇 are the leading and trailing guards and 𝑥 is split into two components 𝑥1 and 𝑥2. The teal
events are those of the reader, which reads the new value of 𝑥1 and the old value of 𝑥2 (leading
to a corrupted value of 𝑥) yet accepts the write since 𝑏𝐿 = 𝑏𝑇 = 𝑘 at the end of computation. The
correct implementation should read in the opposite direction: (1) read the trailing guard; (2) read
the data; (3) read the leading guard; (4) accept the data if the guards match.
In Appendix H.6.1, we model and prove correctness of a more general algorithm using hashes,

which is also implemented in LOCO, that is valid for any size of data.

E Clients using Multiple Libraries

Ring Buffer 𝑥 Barrier 𝑧

𝑎 := SubmitRBL (𝑥, 1)
BARbal (𝑧) BARbal (𝑧)

𝑏 := ReceiveRBL (𝑥)

(𝑎, 𝑏) = (true,⊥) ✗ (𝑎, 𝑏) = (true, 1) ✓

Fig. 24. ring buffer + barrier example

Now that multiple libraries have been defined sepa-
rately, we can write programs combining methods from
all of them. The synchronisation guarantees of each
library (i.e. so) are available to other libraries (via hb)
to restrict the behaviours of the whole program. In the
example of Fig. 24, a first thread sends data to a second
using a ring buffer, and the two threads synchronise
through a barrier, making sure the data is available. I.e.,
if the submit method succeeds, the receive method also has to succeed.

As an illustration, let us showwe cannot have a {rbl, bal}-consistent execution G = ⟨𝐸, po, stmp,
so, hb⟩ corresponding to the disallowed behaviour (𝑎, 𝑏) = (true,⊥). This result corresponds to 𝐸
containing the four events

• e𝑆 = ⟨𝑡1, _, ⟨SubmitRBL, (𝑥, 1), true⟩⟩,
• e𝐵1 = ⟨𝑡1, _, ⟨BARbal, (𝑧), ()⟩⟩,
• e𝐵2 = ⟨𝑡2, _, ⟨BARbal, (𝑧), ()⟩⟩, and
• e𝑅 = ⟨𝑡2, _, ⟨ReceiveRBL, (𝑥),⊥⟩⟩

with po = {⟨e𝑆 , e𝐵1⟩; ⟨e𝐵2, e𝑅⟩}. {rbl, bal}-consistency (Def. 3.6) would imply:

(1) (ppo ∪ so|rbl ∪ so|bal)+ ⊆ hb is irreflexive;
(2) ⟨{e𝑆 ; e𝑅} , ∅, stmp|rbl, so|rbl, _⟩ ∈ rbl.C; and
(3) ⟨{e𝐵1; e𝐵2} , ∅, stmp|bal, so|bal, _⟩ ∈ bal.C.

Assuming the consistency conditions of the two libraries, there is a single possibility for stmp:

• stmp(e𝑆) =
{
aCW, aNRW𝑛2

}
;

• stmp(e𝐵1) = stmp(e𝐵2) =
{
aGF𝑛1 , aGF𝑛2 , aCR

}
; and

• stmp(e𝑅) = {aWT}.

For the barrier library, we necessarily have 𝑐𝑧 = 1, 𝑜 (e𝐵1) = 𝑜 (e𝐵2) = 1, and thus the two events
synchronise. Notably, we have ⟨e𝐵1, aGF𝑛2⟩

so |bal−−−−→ ⟨e𝐵2, aCR⟩. For the ring buffer library, there is no
succeeding receive and rf = ∅. We thus have ⟨e𝑅, aWT⟩

fb−→ ⟨e𝑆 , aNRW𝑛2⟩, with fb = so|rbl. From the
definition of to (Fig. 10), we have ⟨e𝑆 , aNRW𝑛2⟩

ppo

−−→ ⟨e𝐵1, aGF𝑛2⟩ and ⟨e𝐵2, aCR⟩
ppo

−−→ ⟨e𝑅, aWT⟩. This
implies an hb cycle between the four subevents, and the execution cannot be {rbl, bal}-consistent.

40 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

F Correctness Proof of the Mowgli Framework

As mentioned in the paper, for 𝑓 : 𝐴 → 𝐵 and 𝑟 ⊆ 𝐴×𝐴, we note 𝑓 (𝑟) ≜ {⟨𝑓 (𝑥), 𝑓 (𝑦)⟩ | ⟨𝑥,𝑦⟩ ∈ 𝑟 }.
It is straightforward to show that 𝑓 (𝑟1 ∪ 𝑟2) = 𝑓 (𝑟1) ∪ 𝑓 (𝑟2) and 𝑓 (𝑟 |𝐴′) ⊆ 𝑓 (𝑟) | 𝑓 (𝐴′) for any subset
𝐴′ ⊆ 𝐴. When 𝑟 is a strict partial order, we write 𝑟 |imm for the immediate edges in 𝑟 , i.e. 𝑟 \ (𝑟 ; 𝑟).

F.1 Wide Abstraction

First, we generalise the notion of abstractions (Def. 3.11) to wide abstractions.
Definition F.1. Suppose 𝐼 is a well-defined implementation of a library 𝐿 using Λ, and that

𝐺 = ⟨𝐸, po⟩ and 𝐺 ′ = ⟨𝐸′, po′⟩ are plain executions using methods of Λ and (Λ ⊎ {𝐿}) respectively.
We say that a function 𝑓 : 𝐸 → 𝐸′ is a wide abstraction of 𝐺 to 𝐺 ′, denoted wideabs

𝑓

𝐼 ,𝐿
(𝐺,𝐺 ′), iff

• 𝐸′ = 𝑓 (𝐸), i.e. 𝑓 : 𝐸 → 𝐸′ is surjective;
• 𝐸 |𝐿 = ∅, i.e. 𝐺 contains no calls to the abstract library 𝐿;
• 𝑓 (𝑥) ∉ 𝐿 =⇒ 𝑓 (𝑥) = 𝑥 , i.e. events not part of an implementation of 𝐿 are kept unchanged;
• 𝑓 (po) ⊆ (po′)∗ and ∀e1, e2, ⟨𝑓 (e1), 𝑓 (e2)⟩ ∈ po

′ =⇒ ⟨e1, e2⟩ ∈ po; and
• if e′ = ⟨𝑡, 𝜄, ⟨𝑚, 𝑣̃, 𝑣 ′⟩⟩ ∈ 𝐸′ then ⟨⟨𝑣 ′, 0⟩,𝐺 | 𝑓 −1 (e′)⟩ ∈ J𝐼 (𝑡,𝑚, 𝑣̃)K𝑡

The difference with the normal abstraction is that 𝐺 ′ is not limited to methods of 𝐿, but every
method call not from 𝐿 is carried over to the implementation 𝐺 (i.e. in general 𝐸 ∩ 𝐸′ ≠ ∅) and the
abstraction function 𝑓 maps these events to themselves.

F.2 Finding a Wide Abstraction

Lemma F.2. Given p̃ and an implementation 𝐼 of 𝐿 using Λ, if ⟨̃𝑣,𝐺⟩ ∈ JTp̃U𝐼 K then there is
⟨̃𝑣,𝐺 ′⟩ ∈ J̃pK and 𝑓 such that wideabs𝑓

𝐼 ,𝐿
(𝐺,𝐺 ′).

Proof. It is enough to show the following: for all 𝑡 and p, if ⟨⟨𝑣, 𝑘⟩, ⟨𝐸, po⟩⟩ ∈ JTpU𝑡,𝐼 K𝑡 then
there is ⟨⟨𝑣, 𝑘⟩, ⟨𝐸′, po′⟩⟩ ∈ JpK𝑡 and 𝑓 such that wideabs𝑓

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩). Indeed, if this holds,

we can conclude by merging the results of each thread for the case 𝑘 = 0.
For a given 𝑡 , we proceed by induction on p.

• If p = 𝑣 or p = break𝑘 ′ 𝑣 , then TpU𝑡,𝐼 = p and we have ⟨𝐸, po⟩ = ∅𝐺 . We simply take
⟨𝐸, po⟩ = ∅𝐺 and we have wideabs𝑓

𝐼 ,𝐿
(∅𝐺 , ∅𝐺) for the empty function 𝑓 .

• If p =𝑚(𝑣0) with𝑚 ∉ 𝐿.𝑀 , then TpU𝑡,𝐼 = p and we have ⟨𝐸, po⟩ = {e}𝐺 for some event e.
We can choose ⟨𝐸′, po′⟩ = ⟨𝐸, po⟩. We have wideabsId

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩) for the identity

function Id that maps e to itself:
Id({e}) = {e}; 𝐸 |𝐿 = ∅; Id(e) = e; po′ = ∅ = po; and the last property holds since 𝐸′ |𝐿 = ∅.

• If p =𝑚(𝑣0) with𝑚 ∈ 𝐿.𝑀 , then TpU𝑡,𝐼 = 𝐼 (𝑡,𝑚, 𝑣0) and ⟨⟨𝑣, 𝑘⟩, ⟨𝐸, po⟩⟩ ∈ J𝐼 (𝑡,𝑚, 𝑣0)K𝑡 . By
definition of the implementation, we have 𝑘 = 0 and 𝐸 ≠ ∅. Let e′ = (𝑡, 𝜄, ⟨𝑚, 𝑣0, 𝑣⟩) for
some ident 𝜄, we take ⟨𝐸′, po′⟩ = ⟨{e′} , ∅⟩ and we indeed have ⟨⟨𝑣, 0⟩, ⟨𝐸′, po′⟩⟩ ∈ J𝑚(𝑣0)K𝑡 .
We choose the function 𝑓 that maps every element of 𝐸 to e

′, and we need to check
wideabs

𝑓

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩).

We do have {e′} = 𝑓 (𝐸) since 𝐸 ≠ ∅. We have 𝐸 |𝐿 = ∅ since 𝐼 does not use 𝐿. Forall 𝑥 ∈ 𝐸,
𝑓 (𝑥) = e

′ ∈ 𝐿. If (e1, e2) ∈ po then 𝑓 (e1) = e
′ = 𝑓 (e2). po′ = ∅. Finally, for e′ ∈ {e′}, we

have 𝑓 −1 (e′) = 𝐸 and ⟨⟨𝑣, 0⟩, ⟨𝐸, po⟩⟩ ∈ J𝐼 (𝑡,𝑚, 𝑣0)K𝑡 holds.
• If p = let p1 p2, then Tlet p1 p2U𝑡,𝐼 ≜ let Tp1U𝑡,𝐼 (𝜆𝑣.Tp2 𝑣U𝑡,𝐼), and ⟨⟨𝑣, 𝑘⟩, ⟨𝐸, po⟩⟩ ∈

Jlet Tp1U𝑡,𝐼 (𝜆𝑣.Tp2 𝑣U𝑡,𝐼)K𝑡 has two possible sources.
– If ⟨⟨𝑣, 𝑘⟩, ⟨𝐸, po⟩⟩ ∈ JTp1U𝑡,𝐼 K𝑡 (and 𝑘 ≠ 0), then by induction hypothesis we have 𝐸′,

po
′, and 𝑓 such that ⟨⟨𝑣, 𝑘⟩, ⟨𝐸′, po′⟩⟩ ∈ Jp1K𝑡 and wideabs

𝑓

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩). Then

⟨⟨𝑣, 𝑘⟩, ⟨𝐸′, po′⟩⟩ ∈ JpK𝑡 also holds and we are done.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 41

– Else there is 𝐸1, 𝐸2, po1, po2, 𝑣 ′ such that 𝐸 = 𝐸1 ∪ 𝐸2, po = po1 ∪ po2 ∪ (𝐸1 × 𝐸2),
⟨⟨𝑣 ′, 0⟩, ⟨𝐸1, po1⟩⟩ ∈ JTp1U𝑡,𝐼 K𝑡 , and ⟨⟨𝑣, 𝑘⟩, ⟨𝐸2, po2⟩⟩ ∈ JTp2 𝑣U𝑡,𝐼 K𝑡 . By induction hy-
pothesis, there is𝐸′1, 𝐸′2, po′1, po′2, 𝑓1, 𝑓2 such that ⟨⟨𝑣 ′, 0⟩, ⟨𝐸′1, po′1⟩⟩ ∈ Jp1K𝑡 , ⟨⟨𝑣, 𝑘⟩, ⟨𝐸′2, po′2⟩⟩ ∈
Jp2 𝑣K𝑡 , wideabs𝑓1𝐼 ,𝐿 (⟨𝐸1, po1⟩, ⟨𝐸

′
1, po

′
1⟩), and wideabs

𝑓2
𝐼 ,𝐿
(⟨𝐸2, po2⟩, ⟨𝐸′2, po′2⟩).We choose

𝐸′ = 𝐸′1∪𝐸′2, po′ = po
′
1∪po′2∪(𝐸′1×𝐸′2) andwe have ⟨⟨𝑣, 𝑘⟩, ⟨𝐸′, po′⟩⟩ ∈ Jlet p1 (𝜆𝑣 .p2 𝑣)K𝑡

by definition. We define 𝑓 : (𝐸1 ∪ 𝐸2) → (𝐸′1 ∪ 𝐸′2) as the sum of 𝑓1 (on 𝐸1) and 𝑓2 (on
𝐸2). We are left to show wideabs

𝑓

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩).

∗ 𝐸′ = 𝐸′1 ∪ 𝐸′2 = 𝑓1 (𝐸1) ∪ 𝑓2 (𝐸2) = 𝑓 (𝐸1 ∪ 𝐸2) = 𝑓 (𝐸)
∗ (𝐸1 ∪ 𝐸2) |𝐿 = 𝐸1 |𝐿 ∪ 𝐸2 |𝐿 = ∅
∗ If 𝑥 ∈ 𝐸𝑖 and 𝑓 (𝑥) = 𝑓𝑖 (𝑥) ∉ 𝐿, then 𝑓 (𝑥) = 𝑥 since the property holds for 𝑓𝑖
∗ 𝑓 (po) = 𝑓 (po1 ∪ po2 ∪ (𝐸1 × 𝐸2)) = 𝑓 (po1) ∪ 𝑓 (po2) ∪ (𝑓 (𝐸1) × 𝑓 (𝐸2)) ⊆
po

′
1 ∪ Id|𝐸′1 ∪ po

′
2 |𝐸′2 ∪ (𝐸′1 × 𝐸′2) = po

′ ∪ Id.
∗ If (𝑓 (e1), 𝑓 (e2)) ∈ po

′ = po
′
1 ∪ po

′
2 ∪ (𝐸′1 × 𝐸′2), then we have three cases. If

(𝑓 (e1), 𝑓 (e2)) ∈ po
′
1, then (e1, e2) ∈ po1 ⊆ po. If (𝑓 (e1), 𝑓 (e2)) ∈ po

′
2, then

(e1, e2) ∈ po2 ⊆ po. Finally, if 𝑓 (e1) ∈ 𝐸′1 and 𝑓 (e2) ∈ 𝐸′2, then e1 ∈ 𝐸1 and
e2 ∈ 𝐸2, and so (e1, e2) ∈ (𝐸1 × 𝐸2) ⊆ po.

∗ If e′ = (𝑡, 𝜄, ⟨𝑚, 𝑣̃, 𝑣 ′⟩) ∈ 𝐸′𝑖 |𝐿 , from our hypothesis we know ⟨⟨𝑣 ′, 0⟩, ⟨𝐸𝑖 , po𝑖⟩| 𝑓 −1
𝑖

(e′)⟩ ∈
J𝐼 (𝑡,𝑚, 𝑣̃)K𝑡 . We simply have ⟨𝐸𝑖 , po𝑖⟩| 𝑓 −1

𝑖
(e′) = ⟨𝐸, po⟩|𝐸𝑖 | 𝑓 −1𝑖

(e′) = ⟨𝐸, po⟩| 𝑓 −1 (e′) ,
so ⟨⟨𝑣 ′, 0⟩, ⟨𝐸, po⟩| 𝑓 −1 (e′)⟩ ∈ J𝐼 (𝑡,𝑚, 𝑣̃)K𝑡 holds

• Similarly for p of the shape loop p
′.

From this, we can conclude the lemma. Given p̃ and an implementation 𝐼 of 𝐿 using Λ, if
⟨(𝑣1, . . . , 𝑣𝑇),𝐺⟩ ∈ JTp̃U𝐼 K then by definition 𝐺 is of the form 𝐺 =∥1≤𝑡≤𝑇 𝐺𝑡 and ∀1 ≤ 𝑡 ≤
𝑇 .⟨⟨𝑣𝑡 , 0⟩,𝐺𝑡 ⟩ ∈ JTp̃(𝑡)U𝑡,𝐼 K𝑡 . Using the result above, we have 𝐺 ′

1, . . . ,𝐺
′
𝑇
and 𝑓1, . . . , 𝑓𝑇 such that

⟨⟨𝑣𝑡 , 0⟩,𝐺 ′
𝑡 ⟩ ∈ J̃p(𝑡)K𝑡 and wideabs

𝑓𝑡
𝐼 ,𝐿
(𝐺𝑡 ,𝐺 ′

𝑡). We define 𝐺 ′ =∥1≤𝑡≤𝑇 𝐺 ′
𝑡 and 𝑓 : 𝐺 ′ .𝐸 → 𝐺.𝐸 the

sum of 𝑓1, . . . , 𝑓𝑇 . We have ⟨̃𝑣,𝐺 ′⟩ ∈ J̃pK by definition, and we can easily show wideabs
𝑓

𝐼 ,𝐿
(𝐺,𝐺 ′)

similarly to the proof above. □

F.3 Locally Sound Implies Sound

Theorem F.3. If a well-defined implementation is locally sound, then it is sound.

Proof. Let 𝐼 be a locally sound implementation of 𝐿 using Λ. Let p̃ such that loc(𝐼)∩loc(p̃) = ∅.
We need to show that outcomeΛ (Tp̃U𝐼) ⊆ outcomeΛ⊎{𝐿} (p̃).

Let ⟨𝐸, po, stmp, so, hb⟩ Λ-consistent such that ⟨̃𝑣, ⟨𝐸, po⟩⟩ ∈ JTp̃U𝐼 K. From Lemma F.2, there is
𝐸′, po′, 𝑓 such that ⟨̃𝑣, ⟨𝐸′, po′⟩⟩ ∈ J̃pK and wideabs

𝑓

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩).

Let 𝐸𝐿 ≜ 𝐸′ |𝐿 and 𝐸𝑝 ≜ 𝐸′ \ 𝐸𝐿 . We also note po𝐿 ≜ po
′ |𝐸𝐿 and po𝑝 ≜ po

′ |𝐸′𝑝 . By definition of
wideabs

𝑓

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩), we have 𝐸𝑝 ⊆ 𝐸 and 𝑓 |𝐸𝑝 = Id|𝐸𝑝 : by surjectivity if e ∈ 𝐸𝑝 then there

is e0 ∈ 𝐸 such that 𝑓 (e𝑜) = e, but since e ∉ 𝐿 we have 𝑓 (e𝑜) = e𝑜 = e and thus e ∈ 𝐸.
We note𝐸𝑖 = 𝐸\𝐸𝑝 , and create notations such that ⟨𝐸𝑖 , po𝑖 , stmp𝑖 , so𝑖 , hb𝑖⟩ = ⟨𝐸, po, stmp, so, hb⟩|𝐸𝑖

and ⟨𝐸𝑝 , po𝑝 , stmp𝑝 , so𝑝 , hb𝑝⟩ = ⟨𝐸, po, stmp, so, hb⟩|𝐸𝑝 . Thus 𝐸′ = 𝐸𝐿 ∪ 𝐸𝑝 and 𝐸 = 𝐸𝑖 ∪ 𝐸𝑝 . Intu-
itively, 𝐸𝑖 is the implementation of 𝐸𝐿 while the common part 𝐸𝑝 is not modified.
We note 𝑓𝑖 = 𝑓 |𝐸𝑖 . We can easily check that abs𝑓𝑖

𝐼 ,𝐿
(⟨𝐸𝑖 , po𝑖⟩, ⟨𝐸𝐿, po𝐿⟩) holds:

• 𝐸𝐿 = 𝑓𝑖 (𝐸𝑖): Let e ∈ 𝐸𝐿 , since 𝑓 is surjective there is e′ ∈ 𝐸 such that 𝑓 (e′) = e. Since
𝑓 |𝐸𝑝 = Id|𝐸𝑝 , for e0 ∈ 𝐸𝑝 we have 𝑓 (e0) = e0 ∉ 𝐸𝐿 , so e

′ ∈ 𝐸𝑖 .
• 𝐸𝑖 |𝐿 = ∅ since 𝐸𝑖 ⊆ 𝐸 and 𝐸 |𝐿 = ∅.
• 𝐸𝐿 = 𝐸𝐿 |𝐿 by definition.

42 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

• Let e1, e2 ∈ 𝐸𝑖 , if 𝑓𝑖 (e1) ≠ 𝑓𝑖 (e2) then by wideabs𝑓𝐼 ,𝐿 (⟨𝐸, po⟩, ⟨𝐸
′, po′⟩)wehave (𝑓𝑖 (e1), 𝑓𝑖 (e2)) ∈

po
′ |𝐸𝐿 = po𝐿 .

• Let e1, e2 ∈ 𝐸𝑖 such that (𝑓𝑖 (e1), 𝑓𝑖 (e2)) ∈ po𝐿 ⊆ po. By wideabs
𝑓

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩) we

have (e1, e2) ∈ po|𝐸𝑖 = po𝑖 .
• Let e′ = (𝑡, 𝜄, ⟨𝑚, 𝑣̃, 𝑣 ′⟩) ∈ 𝐸𝐿 . From wideabs

𝑓

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩)wehave ⟨⟨𝑣 ′, 0⟩, ⟨𝐸, po⟩| 𝑓 −1 (e′)⟩ ∈

J𝐼 (𝑡,𝑚, 𝑣̃)K𝑡 . Since e′ ∈ 𝐸𝐿 and 𝑓 |𝐸𝑝 = Id|𝐸𝑝 , we have 𝑓 −1 (e′) = 𝑓 −1𝑖 (e′) ⊆ 𝐸𝑖 and thus
⟨𝐸, po⟩| 𝑓 −1 (e′) = ⟨𝐸𝑖 , po𝑖⟩| 𝑓 −1

𝑖
(e′) . So ⟨⟨𝑣 ′, 0⟩, ⟨𝐸𝑖 , po𝑖⟩| 𝑓 −1

𝑖
(e′)⟩ ∈ J𝐼 (𝑡,𝑚, 𝑣̃)K𝑡 .

Next, let us show that ⟨𝐸𝑖 , po𝑖 , stmp𝑖 , so𝑖 , hb𝑖⟩ is Λ-consistent. The first two points are trivial,
and we need to show that for any library 𝐿′ ∈ Λ we have ⟨𝐸𝑖 , po𝑖 , stmp𝑖 , so𝑖 , hb𝑖⟩|𝐿′ 𝐿′-consistent.
By hypothesis, we already know that ⟨(𝐸𝑖 ∪ 𝐸𝑝), po, stmp, so, hb⟩|𝐿′ is 𝐿′-consistent. Thus, by the
decomposability property, it would be enough to show that loc(𝐸𝑖) ∩ loc(𝐸𝑝) = ∅. Since 𝐸𝑝 ⊆ 𝐸′

and ⟨̃𝑣, ⟨𝐸′, po′⟩⟩ ∈ J̃pK, we know that loc(𝐸𝑝) ⊆ loc(𝐸′) ⊆ loc(p̃). Since loc(𝐼) ∩ loc(p̃) = ∅,
it would be enough to show loc(𝐸𝑖) ⊆ loc(𝐼). Let e ∈ 𝐸𝑖 , we have 𝑓𝑖 (e) ∈ 𝐸𝐿 of the form
(𝑡, 𝜄, ⟨𝑚, 𝑣0, 𝑣 ′⟩). By definition of local abstraction, ⟨⟨𝑣 ′, 0⟩, ⟨𝐸𝐿, po𝐿⟩| 𝑓 −1

𝑖
(𝑓𝑖 (e))⟩ ∈ J𝐼 (𝑡,𝑚, 𝑣0)K𝑡 and

e ∈ 𝐸𝐿 | 𝑓 −1
𝑖

(𝑓𝑖 (e)) . By definition of implementation, we have loc(e) ⊆ loc(𝐸𝐿 | 𝑓 −1
𝑖

(𝑓𝑖 (e))) ⊆ loc(𝐼).
Since 𝐼 is locally sound, we can use ⟨𝐸𝑖 , po𝑖 , stmp𝑖 , so𝑖 , hb𝑖⟩ Λ-consistent and abs

𝑓𝑖
𝐼 ,𝐿
(⟨𝐸𝑖 , po𝑖⟩, ⟨𝐸𝐿, po𝐿⟩)

to produce stmp𝐿 , 𝑔𝑖 , and so𝐿 such that:

• 𝑔𝑖 (e′, 𝑎′) = (e, 𝑎) implies 𝑓𝑖 (e) = e
′ and

– Forall 𝑎0 such that (𝑎0, 𝑎′) ∈ to, there exists (e1, 𝑎1) ∈ SEvent𝑖 such that 𝑓𝑖 (e1) = e
′,

(𝑎0, 𝑎1) ∈ to, and ((e1, 𝑎1), (e, 𝑎)) ∈ (hb𝑖 ∪ Id);
– Forall 𝑎0 such that (𝑎′, 𝑎0) ∈ to, there exists (e2, 𝑎2) ∈ SEvent𝑖 such that 𝑓𝑖 (e2) = e

′,
(𝑎2, 𝑎0) ∈ to, and ((e, 𝑎), (e2, 𝑎2)) ∈ (hb𝑖 ∪ Id).

• 𝑔𝑖 (so𝐿) ⊆ hb𝑖 ;
• Forall hb𝐿 transitive such that (ppo𝐿 ∪ so𝐿)+ ⊆ hb𝐿 and 𝑔𝑖 (hb𝐿) ⊆ hb𝑖 , we have

⟨𝐸𝐿, po𝐿, stmp𝐿, so𝐿, hb𝐿⟩ ∈ 𝐿.C, where ppo𝐿 ≜ ⟨𝐸𝐿, po𝐿, stmp𝐿⟩.ppo.

We define stmp′ on 𝐸′ by the sum of stmp𝐿 and stmp𝑝 . We define so
′ ≜ so𝐿 ∪ so𝑝 , as well

as ppo′ ≜ ⟨𝐸′, po′, stmp′⟩.ppo, and hb
′ ≜ (ppo′ ∪ so

′)+. We extend 𝑔𝑖 : ⟨𝐸𝐿, stmp𝐿⟩.SEvent →
⟨𝐸𝑖 , stmp𝑖⟩.SEvent into a function 𝑔 : ⟨𝐸′, po′, stmp′⟩.SEvent → ⟨𝐸, po, stmp⟩.SEvent using the
identity function. I.e., for (e′, 𝑎′) ∈ ⟨𝐸𝑝 , stmp𝑝⟩.SEventwe have𝑔(e′, 𝑎′) = (e′, 𝑎′). The first property
above on 𝑔𝑖 and 𝑓𝑖 carries over to 𝑔 and 𝑓 , by taking, for any stamp, the intermediary subevents to
be the output of 𝑔 itself.

As an important intermediary result, let us show 𝑔(hb′) ⊆ hb. Since hb′ = (ppo′∪so
′)+, we need

to show the inclusion for each component.𝑔(so′) = 𝑔𝑖 (so𝐿)∪Id(so𝑝) ⊆ hb𝑖∪so𝑝 ⊆ hb is immediate,
and we are left with proving 𝑔(ppo′) ⊆ hb. Let (e′1, 𝑎′1), (e′2, 𝑎′2) ∈ SEvent

′ such that (e′1, e′2) ∈ po
′

and (𝑎′1, 𝑎′2) ∈ to. Let (e𝑖 , 𝑎𝑖) ≜ 𝑔(e′𝑖 , 𝑎′𝑖) (𝑖 ∈ {1, 2}), we need to show that ((e1, 𝑎1), (e2, 𝑎2)) ∈ hb.
From the properties of 𝑔, using (e1, 𝑎1) and the stamp 𝑎2, there is (e𝑔1, 𝑎

𝑔

1) such that 𝑓 (e𝑔1) = e
′
1,

(𝑎𝑔1, 𝑎2) ∈ to, and ((e1, 𝑎1), (e𝑔1, 𝑎
𝑔

1)) ∈ hb. From the properties on 𝑔, using (e2, 𝑎2) and the stamp
𝑎
𝑔

1, there is (e𝑔2, 𝑎
𝑔

2) such that 𝑓 (e𝑔2) = e
′
2, (𝑎

𝑔

1, 𝑎
𝑔

2) ∈ to, and ((e𝑔2, 𝑎
𝑔

2), (e2, 𝑎2)) ∈ hb. We know
that e′1 = 𝑓 (e𝑔1) and e

′
2 = 𝑓 (e𝑔2), so from wideabs

𝑓

𝐼 ,𝐿
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩) and (e′1, e′2) ∈ po

′ we have
(e𝑔1, e

𝑔

2) ∈ po. Thus ((e𝑔1, 𝑎
𝑔

1), (e
𝑔

2, 𝑎
𝑔

2)) ∈ ppo, and by transitivity we have ((e1, 𝑎1), (e2, 𝑎2)) ∈ hb.
This finishes the intermediary result 𝑔(hb′) ⊆ hb.

To conclude the theorem, we want to show that ⟨𝐸′, po′, stmp′, so′, hb′⟩ is (Λ ∪ {𝐿})-consistent.

• The first few points hold because hb′ is irreflexive, since 𝑔(hb′) ⊆ hb and hb is irreflexive.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 43

• For 𝐿′ ∈ Λ, we need to show that ⟨𝐸𝑝 , po𝑝 , stmp𝑝 , so𝑝 , hb′⟩|𝐿′ is 𝐿′-consistent. We know
that ⟨𝐸𝑝 , po𝑝 , stmp𝑝 , so𝑝 , hb𝑝⟩|𝐿′ is 𝐿′-consistent, so by monotonicity it is enough to show
hb

′ |𝐸𝑝 ⊆ hb|𝐸𝑝 , which holds because hb′ |𝐸𝑝 = 𝑔(hb′) |𝐸𝑝 ⊆ hb|𝐸𝑝 .
• For 𝐿, we need to show that ⟨𝐸𝐿, po𝐿, stmp𝐿, so𝐿, hb′ |𝐿⟩ is 𝐿-consistent. Using our hypothesis,

it is enough to show that hb𝐿 ≜ hb
′ |𝐿 , which is transitive and includes (ppo𝐿∪so𝐿)+, satisfies

𝑔𝑖 (hb𝐿) ⊆ hb𝑖 . Once again, this holds because 𝑔𝑖 (hb𝐿) = 𝑔(hb′ |𝐸𝐿) ⊆ 𝑔(hb′) |𝐸𝑖 ⊆ hb|𝐸𝑖 =
hb𝑖 .

□

G rdma
wait

implementation into rdma
tso

G.1 Background: rdma
tso

Our definition of rdmatso is closer to an independent language than a library. Unlike the definition
of an execution in Definition 3.3, we do not need a relation hb to represent the potential rest of
the program, as rdmatso is not a library in the sense of Definition 3.5. A program cannot combine
instructions from rdmatso and other libraries presented in this paper, as polling would interfere
with RDMA operations of other libraries.

We use the following 11 methods:
𝑚(𝑣̃) ::= WriteTSO (𝑥, 𝑣) | ReadTSO (𝑥) | CASTSO (𝑥, 𝑣1, 𝑣2) | MfenceTSO ()

| GetTSO (𝑥,𝑦) | PutTSO (𝑥,𝑦) | Poll(𝑛) | RfenceTSO (𝑛)
| SetAdd(𝑥, 𝑣) | SetRemove(𝑥, 𝑣) | SetIsEmpty(𝑥)

• WriteTSO : Loc × Val → ()
• ReadTSO : Loc → Val

• CASTSO : Loc × Val × Val → Val

• MfenceTSO : () → ()
• GetTSO : Loc × Loc → Val

• PutTSO : Loc × Loc → Val

• Poll : Node → Val

• RfenceTSO : Node → ()
• SetAdd : Loc × Val → ()
• SetRemove : Loc × Val → ()
• SetIsEmpty : Loc → B

As expected, the Wait operation is replaced with a Poll operation. Compared to rdmatso from
[Ambal et al. 2024], we slightly extend the language so that put/get operations return an arbitrary
unique identifier, and polling also returns the same identifier of the operation being polled4. In
addition, we also assume basic set operations SetAdd, SetRemove, and SetIsEmpty to store these
new identifiers, where the locations used for sets do not overlap with locations used for other
operations.

Consistency predicate. An execution of an rdmatso program is of the form G = ⟨𝐸, po, stmp, so⟩,
similarly to Def. 3.5 but hb = (ppo ∪ so)+ does not have the flexibility of containing additional
external constraints.

We define the only valid stamping function stmpTSO as follows:
• A poll has stamp aWT: stmpTSO ((_, _, (Poll, _, _))) = {aWT}.
• Auxiliary set operations have stamp aMF: stmpTSO ((_, _, (SetAdd, _, _))) =
stmpTSO ((_, _, (SetRemove, _, _))) = stmpTSO ((_, _, (SetIsEmpty, _, _))) = {aMF}.

• Other events follow stmpRL (cf. Appendix G.2). E.g., events calling WriteTSO have stamp
aCW, while events calling GetTSO towards node 𝑛 have stamps aNRR𝑛 and aNLW𝑛 . We also
define loc on subevents similarly to rdmawait.

4In practice, the identifier is not random and can be chosen by the program

44 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

We mark set operations with aMF to simplify the consistency conditions, as we do not want to
explicitly integrate them in the read (R) and write (W) subevents.

Given G = ⟨𝐸, po, stmpTSO, so⟩, we say that vR, vW, rf, mo, nfo, and pf are well-formed if:
• vR, vW, rf, mo, and nfo are well-formed, as in rdmawait;
• Let 𝑃𝑛 ≜ {(e, aWT) | e = (_, _, (Poll, (𝑛), _)) ∈ 𝐸} be the set of poll (sub)events towards
node 𝑛. Then pf ⊆ ⋃

𝑛∈Node (G.aNLW𝑛 ∪ G.aNRW𝑛) × 𝑃𝑛 is the polls-from relation, relating
earlier NIC writes to later polls. Moreover:
– pf ⊆ po (we can only poll previous operations of the same thread);
– pf is functional on its domain (every NIC write can be polled at most once);
– pf is total and functional on its range (every Poll polls from exactly one NIC write);
– Poll events poll-from the oldest non-polled remote operation towards the given node:

for each node 𝑛, if 𝑤1,𝑤2 ∈ (G.aNLW𝑛 ∪ G.aNRW𝑛) and 𝑤1
po

−−→ 𝑤2
pf

−→ 𝑝2, then there
exists 𝑝1 such that𝑤1

pf

−→ 𝑝1
po

−−→ 𝑝2;
– and a Poll returns the unique identifier of the polled operation:

if ((_, _, (_, _, 𝑣1)), _)
pf

−→ ((_, _, (Poll, _, 𝑣2)), aWT) then 𝑣1 = 𝑣2.
We use the derived relations rb, rbi, rfe, rfi, ippo, and iso as defined for rdmawait. We can then

define ib as follows:
ib ≜ (ippo ∪ iso ∪ rf ∪ pf ∪ nfo ∪ rbi)+

Definition G.1 (rdmatso-consistency). G = ⟨𝐸, po, stmp, so⟩ is rdmatso-consistent if:
• (ppo ∪ so)+ is irreflexive (similarly to Definition 3.6);
• ⟨𝐸, po⟩ respects nodes (as in rdmawait);
• stmp = stmpTSO;
• there exists well-formed vR, vW, rf, mo, nfo, and pf such that ib is irreflexive and
so = iso ∪ rfe ∪ [aNLW]; pf ∪ nfo ∪ rb ∪mo ∪ ([Inst]; ib);

• identifiers for get/put operations are unique:
if e1 and e2 are both of the form (_, _, (GetTSO, _, 𝑣)) or (_, _, (PutTSO, _, 𝑣)), then e1 = e2;

• and the set operations are (per-thread) sound: if SetIsEmpty returns true, then every
value added to the set was subsequently removed. I.e., if e1 = (𝑡, _, (SetAdd, (𝑥, 𝑣), _),
e3 = (𝑡, _, (SetIsEmpty, (𝑥), true)), and e1

po

−−→ e3, then there exists e2 = (𝑡, _, (SetRemove, (𝑥, 𝑣), _)
such that e1

po

−−→ e2
po

−−→ e3.

G.2 rdma
wait

Library

This appendix completes Section 3.3 on the definition of rdmawait. As mentioned, we have the 8
methods:

𝑚(𝑣̃) ::= Write(𝑥, 𝑣) | Read(𝑥) | CAS(𝑥, 𝑣1, 𝑣2) | Mfence()
| Get(𝑥,𝑦, 𝑑) | Put(𝑥,𝑦, 𝑑) | Wait(𝑑) | Rfence(𝑛)

• Write : Loc × Val → ()
• Read : Loc → Val

• CAS : Loc × Val × Val → Val

• Mfence : () → ()

• Get : Loc × Loc ×Wid → ()
• Put : Loc × Loc ×Wid → ()
• Wait : Wid → ()
• Rfence : Node → ()

We also define loc as expected: loc(Write(𝑥, 𝑣)) = loc(Read(𝑥)) = loc(CAS(𝑥, 𝑣1, 𝑣2)) = {𝑥};
loc(Get(𝑥,𝑦, 𝑑)) = loc(Put(𝑥,𝑦, 𝑑)) = {𝑥 ;𝑦}; and loc(e) = ∅ otherwise.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 45

We assume that each location 𝑥 is associated with a specific node n(𝑥). We say that ⟨𝐸, po⟩
respects nodes if for all event on thread 𝑡 with label of the form (Write, (𝑥, _), _), (Read, (𝑥), _),
(CAS, (𝑥, _, _), _), (Get, (𝑥, _, _), _), or (Put, (_, 𝑥, _), _), we have n(𝑥) = n(𝑡). I.e. arguments corre-
sponding to local locations should be locations of the current node. Given ⟨𝐸, po⟩, we now define
the only valid stamping function stmpRL. Since the thread is not relevant, we note stmpRL (𝑚(𝑣̃), 𝑣 ′)
for stmpRL (⟨_, _, ⟨𝑚, 𝑣̃, 𝑣 ′⟩⟩).

• stmpRL (Write(𝑥, 𝑣), ()) = {aCW}
• stmpRL (Read(𝑥), 𝑣) = {aCR}
• stmpRL (Mfence(), ()) = {aMF}
• stmpRL (CAS(𝑥, 𝑣1, 𝑣2), 𝑣1) = {aCAS}
• stmpRL (CAS(𝑥, 𝑣1, 𝑣2), 𝑣3) = {aMF; aCR} if 𝑣1 ≠ 𝑣3

• stmpRL (Wait(𝑑), ()) = {aWT}
• stmpRL (Get(𝑥,𝑦, 𝑑), ()) =

{
aNRRn(𝑦) ; aNLWn(𝑦)

}
• stmpRL (Put(𝑥,𝑦, 𝑑), ()) =

{
aNLRn(𝑥) ; aNRWn(𝑥)

}
• stmpRL (Rfence(𝑛), ()) = {aRF𝑛}

Put and get operations perform both a NIC read and a NIC write, and as such are associated
to two stamps. A succeeding CAS can be represented as a single stamp aCAS, while a failing CAS
behaves as both a memory fence (aMF) and a CPU read (aCR).

We extend loc to subevents. For events with zero or one locations, the subevents have the same
set of locations. For Get/Put, each of the two subevent is associated to the relevant location. E.g. if
e = (_, _, (Get, (𝑥,𝑦, 𝑑), _)), then loc(⟨e, aNRRn(𝑦)⟩) = {𝑦} and loc(⟨e, aNLWn(𝑦)⟩) = {𝑥}.

Given an execution G = ⟨𝐸, po, stmpRL, _, _⟩, recall we define the set of reads as G.R ≜ G.aCR ∪
G.aCAS ∪ G.aNLR ∪ G.aNRR and writes as G.W ≜ G.aCW ∪ G.aCAS ∪ G.aNLW ∪ G.aNRW. We say
that vR, vW, rf, mo, and nfo are well-formed if:

• vR : G.R → Val associates each read subevent with a value, matching the value returned if
available: if e has a label of the form (Read, _, 𝑣) or (CAS, _, 𝑣), then vR (e) = 𝑣 .

• vW : G.W → Val associates each write subevent with a value, matching the value written if
known in G: if e has a label of the form (Write, (_, 𝑣), _) or (CAS, (_, 𝑣 ′, 𝑣), 𝑣 ′), then vW (e) = 𝑣 .

• RDMA operations write the value read: if s1 = ⟨e, aNLR𝑛⟩ ∈ 𝐸 and s2 = ⟨e, aNRW𝑛⟩ ∈ 𝐸, then
vR (s1) = vW (s2); and similarly for aNRR𝑛 and aNLW𝑛 .

• rf ⊆ G.W × G.R is the ‘reads-from’ relation on events of the same location with matching
values; i.e. (s1, s2) ∈ rf ⇒ loc(s1) = loc(s2) ∧ vW (s1) = vR (s2). rf is functional on its range:
every read in G.R is related to at most one write in G.W. If a read is not related to a write,
it reads the initial value of zero: s2 ∈ G.R ∧ (_, s2) ∉ rf ⇒ vR (s2) = 0.

• mo ≜
⋃
𝑥∈Loc mo𝑥 is the ‘modification-order’, where each mo𝑥 is a strict total order on

G.W𝑥 describing the order in which writes on 𝑥 reach the memory.
• nfo is the ‘NIC flush order’, such that for all 𝑛 and (s1, s2) ∈ G.SEvent with t(s1) = t(s2), if

(s1, s2) ∈ G.aNLR𝑛×G.aNLW𝑛 then (s1, s2) ∈ nfo∪nfo−1, and if (s1, s2) ∈ G.aNRR𝑛×G.aNRW𝑛
then (s1, s2) ∈ nfo ∪ nfo

−1.

The definitions above are similar to the relations defined for sv (see §3.4), with the addition of nfo
representing the PCIe guarantees that NIC reads flush previous NIC writes.
For each subevent, we distinguish the moment the subevent starts executing and the moment

it finishes executing. The relation so represents dependency between the end of executions of
subevents. To express the semantics of rdmawait, we also need to consider the issued-before relation
ib representing dependency between the start of executions of subevents. Note that neither ib or
so is a subset of the other. The starting (when sent to the store buffer of PCIe fabric) and finishing
(reaching memory) points of some write subevents might differ. We define the set of instantaneous
subevents as G.Inst ≜ G.SEvent \ (G.aCW ∪ G.aNLW ∪ G.aNRW), regrouping the subevents that
start and finish at the same time.

Given G and well-formed vR, vW, rf, mo, and nfo, we derive additional relations.

46 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

rb ≜
{
(𝑟,𝑤)

���� 𝑟 ∈ G.R ∧𝑤 ∈ G.W ∧ loc(𝑟) = loc(𝑤)
∧ ((𝑟,𝑤) ∈ (rf−1;mo) ∨ 𝑟 ∉ img(rf))

}
\ [G.SEvent] rfe ≜ rf \ rfi

pfg ≜

((e1, aNLW𝑛), (e2, aWT))
������ ∃𝑑. (e1, e2) ∈ po

∧ e1 = (_, _, (Get, (_, _, 𝑑), _))
∧ e2 = (_, _, (Wait, (𝑑), _))

 rfi ≜ [aCW]; (po ∩ rf); [aCR]

pfp ≜

((e1, aNRW𝑛), (e2, aWT))
������ ∃𝑑. (e1, e2) ∈ po

∧ e1 = (_, _, (Put, (_, _, 𝑑), _))
∧ e2 = (_, _, (Wait, (𝑑), _))


rbi ≜ [aCR]; ((po ∪ po

−1) ∩ rb); [aCW]

iso ≜ {((e, aMF), (e, aCR)) | e = (_, _, (CAS, _, _)) ∈ 𝐸 ∧ stmpRL (e) = {aMF; aCR}}
∪ {((e, aNRR𝑛), (e, aNLW𝑛)) | e = (_, _, (Get, _, _)) ∈ 𝐸 ∧ stmpRL (e) = {aNRR𝑛 ; aNLW𝑛}}
∪ {((e, aNLR𝑛), (e, aNRW𝑛)) | e = (_, _, (Put, _, _)) ∈ 𝐸 ∧ stmpRL (e) = {aNLR𝑛 ; aNRW𝑛}}

pfg (resp pfp) represent the synchronisation between the write part of a get (resp put) and a
later Wait on the same work identifier. While both are included in ib, only pfg is included in so as
waiting for a put does not guarantee the NIC remote write has finished. We define rfe, rfi, and rb

similarly to the semantics of sv, and we also define rbi as expected. The internal synchronisation
order iso represents ordering between subevents of the same event. We ask that puts and gets read
before writing, and that a failing CAS performs a memory fence before reading.
Finally we can define ib as follows. ib includes a larger subset of po than ppo, as we guarantee

the starting order of the cases corresponding to cells B1, B5, G10, and I10 of Fig. 10. I.e., while a
later CPU read might finish before an earlier CPU write, they have to start in order; and while a
remote fence does not guarantee previous NIC writes have finished, it guarantees they have at
least started.

ippo ≜ ppo ∪ [G.aCW]; po; [G.aCR ∪ G.aWT] ∪
⋃

𝑛∈Node
([G.aNRW𝑛 ∪ G.aNLW𝑛]; po; [G.aRF𝑛])

ib ≜ (ippo ∪ iso ∪ rf ∪ pfg ∪ pfp ∪ nfo ∪ rbi)+

And from this we define the consistency predicate for rdmawait, similarly to the semantics of
rdmatso. We ask that ib and so be irreflexive, the second being implied by Def. 3.6. The inclusion
of ([Inst]; ib) in so indicates that, if an instantaneous subevent starts before another subevent,
then they also finish in the same order.

Definition G.2 (rdmawait-consistency). G = ⟨𝐸, po, stmp, so, hb⟩ is rdmawait-consistent if:
• ⟨𝐸, po⟩ respects nodes;
• stmp = stmpRL;
• there exists well-formed vR, vW, rf, mo, and nfo such that ib is irreflexive and
so = iso ∪ rfe ∪ pfg ∪ nfo ∪ rb ∪mo ∪ ([Inst]; ib).

We can easily check that this predicate satisfies monotonicity and decomposability.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 47

For a thread 𝑡 using work identifiers {𝑑1, . . . , 𝑑𝐾 } :

𝐼W (𝑡, Write, (𝑥, 𝑣)) ≜ WriteTSO (𝑥, 𝑣)
𝐼W (𝑡, Read, (𝑥)) ≜ ReadTSO (𝑥)
𝐼W (𝑡, CAS, (𝑥, 𝑣1, 𝑣2)) ≜ CASTSO (𝑥, 𝑣1, 𝑣2)
𝐼W (𝑡, Mfence, ()) ≜ MfenceTSO ()
𝐼W (𝑡, Rfence, (𝑛)) ≜ RfenceTSO (𝑛)

𝐼W (𝑡, Get, (𝑥,𝑦, 𝑑)) ≜
let 𝑣 = GetTSO (𝑥,𝑦) in SetAdd(𝑑n(𝑦) , 𝑣)

𝐼W (𝑡, Wait, (𝑑)) ≜
For 𝑛 in 1, . . . , 𝑁 do {

While (SetIsEmpty(𝑑𝑛) ≠ true) do {

let 𝑣 = Poll(𝑛) in
For 𝑘 in 1, . . . , 𝐾 do {

SetRemove(𝑑𝑛
𝑘
, 𝑣) } } }

𝐼W (𝑡, Put, (𝑥,𝑦, 𝑑)) ≜
let 𝑣 = PutTSO (𝑥,𝑦) in SetAdd(𝑑n(𝑥) , 𝑣)

Fig. 25. Implementation 𝐼W of rdma
wait

into rdma
tso

G.3 Implementation Function

In Fig. 25 we define the implementation 𝐼W from a full program using only the rdmawait library into
a program using only rdmatso. We assume threads use disjoint work identifiers 𝑑 ∈ Wid, otherwise
it is straightforward to rename them.

For each location 𝑥 of rdmawait, we also use a location 𝑥 for rdmatso. For each work identifier
𝑑 of rdmawait, we use new rdmatso locations

{
𝑑1, . . . , 𝑑𝑁

}
where 𝑁 ≜ #(Node) is the number of

nodes. Each location 𝑑𝑛 is used as a set containing the identifiers of ongoing operations towards
node 𝑛.
Most rdmawait operations (Write, Read, CAS, Mfence, and Rfence) are directly translated into

their rdmatso counterparts. An operation Get(𝑥,𝑦, 𝑑) towards node 𝑛 is translated into a similar
GetTSO (𝑥,𝑦) whose output is added to the set 𝑑𝑛 ; We proceed similarly for puts. Finally, a Wait(𝑑)
operation needs to poll until all relevant operations are finished, i.e. the sets

{
𝑑1, . . . , 𝑑𝑁

}
are all

empty. Whenever we poll, we obtain the identifier of a finished operation, and we remove it from
all sets where it might be held. We remove it from 𝑑𝑛 but also from any other set 𝑑𝑛

𝑘
tracking a

different group of operations, as otherwise a later call to Wait(𝑑𝑘) would hang and never return.
To simplify the notation of the implementation, we use the intuitive for-loops and while-loops.

As no information is carried between the loops, these for-loops can be inlined, and the while-loops
can easily be turned into loop-break similarly to Fig. 11.

G.4 Proof

We do not prove that the implementation above is locally sound (Definition 3.13), as Theorem 3.14
does not apply in this case. It is not possible to combine a program following rdmatso with programs
of the other libraries presented in this paper. Instead, we assume a full program using only the
rdmawait library and compile it into rdmatso.

Theorem G.3. Let p̃ be a program using only the rdmawait library. Then we have
outcomerdmatso (Tp̃U𝐼W) ⊆ outcome{rdmawait } (p̃), where:

outcome{rdmawait } (p̃) =
{
𝑣̃
�� ∃⟨𝐸, po, stmp, so, hb⟩ {rdmawait}-consistent. ⟨̃𝑣, ⟨𝐸, po⟩⟩ ∈ J̃pK

}
outcomerdmatso (Tp̃U𝐼W) =

{
𝑣̃
�� ∃⟨𝐸, po, stmp, so⟩ rdmatso-consistent. ⟨̃𝑣, ⟨𝐸, po⟩⟩ ∈ JTp̃U𝐼WK

}
Proof. See Theorem H.9. □

48 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

.

.

.
.
.
.

aNLR𝑛1 aNRW𝑛1

aNLR𝑛𝑘 aNRW𝑛𝑘

aNLR𝑛1 aNRW𝑛1

aNLR𝑛𝑘 aNRW𝑛𝑘

Bcastsv (𝑥,𝑑, {𝑛1, . . . , 𝑛𝑘 })

⟨𝐸′, po′, stmp′ ⟩
Node 𝑛

⟨𝐸, po, stmp, so, hb⟩
Node 𝑛

Put(𝑥𝑛1 , 𝑥𝑛 , 𝑑)

Put(𝑥𝑛𝑘 , 𝑥𝑛 , 𝑑)

po

po

𝑓

𝑓

𝑓

𝑔

𝑔

𝑔

(a) Concretisation function for broadcasts.

.

.

.

.

.

.

aGF𝑛1

aGF𝑛𝑘

aNRR𝑛1 aNLW𝑛1

aNRR𝑛𝑘 aNLW𝑛𝑘

aWT
GFsv ({𝑛1, . . . , 𝑛𝑘 })

⟨𝐸′, po′, stmp′ ⟩
Node 𝑛

⟨𝐸, po, stmp, so, hb⟩
Node 𝑛

Get(⊥𝑛 ,⊥𝑛1 , 𝑑0)

Get(⊥𝑛 ,⊥𝑛𝑘
, 𝑑0)

Wait(𝑑0)

po

po

𝑓

𝑓

𝑓
𝑔

𝑔

𝑎0
𝑎0

to

to

pfg ⊆ hb

(b) Concretisation function for global fence.

Fig. 26. Local soundness proof of 𝐼SV: concretisation function 𝑔 for broadcast and global fence, with n(𝑡) = 𝑛.
For broadcast, each subevent of the sv program is mapped to a subevent of the implementation that uses the

same stamp. For global fence, subevents with stamp aGF𝑛′ are mapped to subevents with weaker stamps

aWT, and we show that for any previous stamp 𝑎0 a happens-before order can be given in the implementation

(shown for the first subevent aGF𝑛1).

⟨𝐸′, po′, stmp′ ⟩ ⟨𝐸, po, stmp, so, hb⟩
Node 𝑛1 Node 𝑛2 Node 𝑛1 Node 𝑛2

Writesv (𝑥, 𝑣1) Writesv (𝑥, 𝑣2) Write(𝑥𝑛1 , 𝑣1) Write(𝑥𝑛2 , 𝑣2)

Bcastsv (𝑥,𝑑, {𝑛2 }) ⟨_, _, ⟨Readsv, (𝑥), 𝑣1 ⟩⟩ Put(𝑥𝑛2 , 𝑥𝑛1 , 𝑑) ⟨_, _, ⟨Read, (𝑥𝑛2), 𝑣1 ⟩⟩

aCW v′W :𝑣1 aCW v′W :𝑣2 aCW vW :𝑣1 aCW vW :𝑣2

aNLR𝑛2
v′R :𝑣1

aNLR𝑛2
vR :𝑣1

aNRW𝑛2
v′W :𝑣1

aNRW𝑛2
vW :𝑣1

aCR
v′R :𝑣1

aCR
vR :𝑣1

𝑔

𝑔

po
′

popo
′

porf
′𝑛1 rf

rf
′𝑛2 rf

mo

′𝑛2
𝑥

mo𝑥𝑛2

Fig. 27. Local soundness proof of 𝐼SV: example of v′R, v
′
W, rf

′
, and mo

′
, defined from ⟨𝐸, po, stmp, so, hb⟩.

These graphs correspond to the execution of the implementation of Writesv (𝑥, 𝑣1); Bcastsv (𝑥, 𝑑, {𝑛2}) ∥
Writesv (𝑥, 𝑣2); Readsv (𝑥) where the second node reads the value of the first node.

⟨𝐸′, po′, stmp′, so′, hb′ ⟩
Node 𝑛0

⟨𝐸, po, stmp, so, hb⟩
Node 𝑛0

Bcastsv (𝑥,𝑑, { . . . , 𝑛, . . .}) Put(𝑥𝑛 , 𝑥𝑛0 , 𝑑)

Waitsv (𝑑) Wait(𝑑)

po
′

po

aNLR𝑛 aNRW𝑛 aNLR𝑛 aNRW𝑛

aWT aWT

𝑔

𝑔

pf
′

iso

pfp

Fig. 28. Local soundness proof of 𝐼SV: 𝑔(pf′) ⊆ iso; pfp ⊆ ([Inst]; ib); ib ⊆ hb.

H Correctness Proofs of the Core LOCO Libraries

H.1 sv Library

Theorem H.1. The implementation 𝐼SV of the sv library into rdmawait given in the paper is locally
sound.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 49

Proof. We assume an {rdmawait}-consistent execution G = ⟨𝐸, po, stmp, so, hb⟩ which is ab-
stracted via 𝑓 to ⟨𝐸′, po′⟩ that uses the sv library, i.e. abs𝑓

𝐼SV,sv (⟨𝐸, po⟩, ⟨𝐸
′, po′⟩) holds.

As a reminder, ⟨𝐸′, po′⟩ (and later notations with an apostrophe) represents a client program
using only calls to the sv library, while ⟨𝐸, po⟩ is the implementation of this program (via 𝐼SV), thus
using calls to the rdmawait library. We assume the execution G of the implementation is consistent
(w.r.t. rdmawait) and want to show the corresponding behaviour of the client program is consistent
(w.r.t. the specification of sv in Definition 3.8), following the notion of local soundness (Def. 3.13).

Following Definition 3.13, we need to provide stmp′, so′, and 𝑔 : ⟨𝐸′, po′, stmp′⟩.SEvent →
G.SEvent respecting some conditions. From ⟨𝐸′, po′⟩, we simply take stmp′ = stmpSV. We note
SEvent

′ for ⟨𝐸′, po′, stmp′⟩.SEvent.
Since G is {rdmawait}-consistent, it means (ppo ∪ so)+ ⊆ hb, hb is transitive and irreflexive,

and G is rdmawait-consistent. Firstly, it means that for all thread 𝑡 we have po|𝑡 is a strict total
order. From the properties of abs𝑓

𝐼SV,sv (⟨𝐸, po⟩, ⟨𝐸
′, po′⟩), we can easily see that it implies po′ |𝑡 is

also a strict total order. Secondly, there exists well-formed vR, vW, rf, mo, and nfo such that ib is
irreflexive, stmp = stmpRL, and so = iso ∪ rfe ∪ pfg ∪ nfo ∪ rb ∪mo ∪ ([Inst]; ib).
We define the concretisation function𝑔 as follows. The two involved cases are illustrated in Fig. 26.

• For an event e′ = (𝑡, _, (Readsv, (𝑥), 𝑣)), the only subevent is (e′, aCR) ∈ SEvent
′. By defini-

tion of the abstraction 𝑓 , the set J𝐼SV (𝑡, Readsv, (𝑥))K𝑡 = JRead(𝑥n(𝑡))K𝑡 ={
⟨⟨𝑣 ′, 0⟩,

{
(𝑡, 𝜄, ⟨Read, 𝑥n(𝑡) , 𝑣 ′⟩)

}
𝐺
⟩
�� 𝑣 ′ ∈ Val ∧ 𝜄 ∈ ActionId

}
contains ⟨⟨𝑣, 0⟩, ⟨𝐸, po⟩| 𝑓 −1 (e′)⟩,

so there is an event e = (𝑡, _, (Read, (𝑥n(𝑡)), 𝑣)) ∈ 𝐸 with 𝑓 (e) = e
′. From the defini-

tion of stmpRL, it is associated to a single subevent (e, aCR) ∈ G.SEvent, and we define
𝑔(e′, aCR) = (e, aCR). The first condition of 𝑔 trivially holds for this input since the output
uses the same stamp: for any stamp 𝑎0 we can choose (e1, 𝑎1) = (e2, 𝑎2) = (e, aCR) using
the Id function, and the to order is preserved for any previous or later stamp.

• For an event e′ = (𝑡, _, (Writesv, (𝑥, 𝑣), ())), a similar reasoning allows us to choose𝑔(e′, aCW) =
(e, aCW) with e = (𝑡, _, (Write, (𝑥n(𝑡) , 𝑣), ())) ∈ 𝑓 −1 (e′).

• For an event e′ = (𝑡, _, (Waitsv, (𝑑), ())), a similar reasoning allows us to choose𝑔(e′, aWT) =
(e, aWT) with e = (𝑡, _, (Wait, (𝑑), ())) ∈ 𝑓 −1 (e′).

• For an event e′ = (𝑡, _, (Bcastsv, (𝑥, 𝑑, {𝑛1; . . . ;𝑛𝑘 }), ())) and a subevent (e′, aNLR𝑛𝑖), with
1 ≤ 𝑖 ≤ 𝑘 , since the implementation of e′ contains Put(𝑥𝑛𝑖 , 𝑥n(𝑡) , 𝑑), the abstraction 𝑓

similarly implies an event e = (𝑡, _, (Put, (𝑥𝑛𝑖 , 𝑥n(𝑡) , 𝑑), ())) ∈ 𝑓 −1 (e′). This case is illustrated
in Fig. 26a. As before, given stmpRL, we can choose 𝑔(e′, aNLR𝑛𝑖) = (e, aNLR𝑛𝑖) and the first
condition on 𝑔 holds using the identity function.

• Similarly for an event e′ = (𝑡, _, (Bcastsv, (𝑥, 𝑑, {𝑛1; . . . ;𝑛𝑘 }), ())) and a subevent (e′, aNRW𝑛𝑖),
we can choose 𝑔(e′, aNRW𝑛𝑖) = (e, aNRW𝑛𝑖) with e = (𝑡, _, (Put, (𝑥𝑛𝑖 , 𝑥n(𝑡) , 𝑑), ())) ∈ 𝑓 −1 (e′).
This is also illustrated in Fig. 26a.

• For an event e′ = (𝑡, _, (GFsv, ({𝑛1; . . . ;𝑛𝑘 }), ())) and a subevent (e′, aGF𝑛𝑖), the relevant
part of the implementation 𝑓 −1 (e′) of e′ contains an event of label Get(⊥n(𝑡) ,⊥𝑛𝑖 , 𝑑0) (with
stamps aNRR𝑛𝑖 and aNLW𝑛𝑖) followed by one of label Wait(𝑑0) (with stamp aWT). See Fig. 26b
for an illustration. Since the restrictive stamp aGF𝑛𝑖 needs to be implemented using weaker
stamps, the choice of 𝑔 is more delicate. We choose for 𝑔 to map to the last subevent, i.e.
𝑔(e′, aGF𝑛𝑖) = (e, aWT) with e = (𝑡, _, (Wait, (𝑑0), ())) ∈ 𝑓 −1 (e′), and we need to check the
stamp ordering is preserved. For a later stamp 𝑎0 such that (aGF𝑛𝑖 , 𝑎0) ∈ to, we can simply
use (e2, 𝑎2) = (e, aWT) using the Id function. We have (aWT, 𝑎0) ∈ to by definition (in Fig. 10,
lines E and K are identical). For an earlier stamp 𝑎0 such that (𝑎0, aGF𝑛𝑖) ∈ to, we use the
entry point (e1, 𝑎1) = ((𝑡, _, (Get, (⊥n(𝑡) ,⊥𝑛𝑖 , 𝑑0), ())), aNLW𝑛𝑖), as illustrated in Fig. 26b. As
previously, we clearly have e1 ∈ 𝑓 −1 (e′). We have (𝑎0, aNLW𝑛𝑖) ∈ to by definition (in Fig. 10,

50 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

columns 9 and 11 are identical). We also need to check that ((e1, aNLW𝑛𝑖), (e, aWT)) ∈ hb.
Since G is {rdmawait}-consistent, this is simply because ((e1, aNLW𝑛𝑖), (e, aWT)) ∈ pfg ⊆
so ⊆ hb as the two events are in po and use the same identifier 𝑑0.

Now we need to find so
′ such that 𝑔(so′) ⊆ hb and such that G′ = ⟨𝐸′, po′, stmp′, so′, hb′⟩

is sv-consistent for any reasonable hb
′. Actually, since hb

′ does not appear in the consistency
predicate, we can ignore the properties of hb′ and we need to check that ⟨𝐸′, po′, stmp′, so′, _⟩ is
sv-consistent. For this, we need to choose well-formed v′R, v′W, rf′, and mo

′.
For v′R and v′W, we simply take v′R (s′) ≜ vR (𝑔(s′)) and v′W (s′) ≜ vW (𝑔(s′)). For the methods Writesv

and Readsv, these new functions v′R and v′W respect the value read/written, since vR and vW do so
in G.SEvent. Similarly, if s′1 = (e′, aNLR𝑛) ∈ SEvent

′ and s
′
2 = (e′, aNRW𝑛) ∈ SEvent

′ (so e
′ calls the

Bcastsv method), then by definition of 𝑔 they are mapped to s1 = (e, aNLR𝑛) and s2 = (e, aNRW𝑛)
using the same Put event and so v′R (s′1) = vR (s1) = vW (s2) = v′W (s′2) since vR and vW are well-formed.

We define rf′ ≜
⋃
𝑛 rf

′𝑛 and mo
′ ≜

⋃
𝑥,𝑛 mo

′𝑛
𝑥 from rf and mo as follows:

rf
′𝑛 ≜ {(𝑤, 𝑟) | 𝑟 ∈ G′ .R𝑛 ∧ (𝑔(𝑤), 𝑔(𝑟)) ∈ rf}

mo
′𝑛
𝑥 ≜

{
(𝑤1,𝑤2)

�� (𝑔(𝑤1), 𝑔(𝑤2)) ∈ mo𝑥𝑛

}
As an illustration, Fig. 27 shows how v′R, v′W, rf′, and mo

′ are defined on a small program. The
relations naturally carry over from the implementation to the client program. In general, we show
that rf′ and mo

′ are indeed well formed (see 3.4).
It is straightforward to check that rf′𝑛 ⊆ G′ .W𝑛×G′ .R𝑛 . If (s′1, s′2) ∈ rf

′𝑛 , then (𝑔(s′1), 𝑔(s′2)) ∈ rf

and v′W (s′1) = vW (𝑔(s′1)) = vR (𝑔(s′2)) = v′R (s′2).
We argue that if s′2 ∉ img(rf′𝑛) then 𝑔(s′2) ∉ img(rf). This might not be obvious since rf is bigger,

as it has for instance statements about the ⊥𝑛 locations. The reason is that, for each node 𝑛 and
sv location 𝑥 , the relation 𝑔−1 is total and functional on G.W𝑥𝑛 , i.e. every write subevent in the
implementation (outside those on the dummy locations ⊥𝑛) is associated with a write subevent
of the sv library. This can be checked by considering 𝐼SV and the different cases of the definition
of 𝑔. Thus if (s1, 𝑔(s′2)) ∈ rf there is s′1 such that 𝑔(s′1) = s1 and s

′
2 ∈ img(rf′𝑛). So for a subevent

s
′
2 ∉ img(rf′𝑛) we have 𝑔(s′2) ∉ img(rf) and v′R (s′2) = vR (𝑔(s′2)) = 0.
We also need to check that each mo

′𝑛
𝑥 is a strict total order on G′ .W𝑛

𝑥 . This is simply because
for all s′ ∈ G′ .W𝑛

𝑥 we have 𝑔(s′) ∈ G.W𝑥𝑛 , and we know mo is a strict total order on G.W𝑥𝑛 .
Now that v′R, v′W, rf′, and mo

′ are defined, the derived relations pf′, rb′, iso′, rf′
e
, and so

′ ≜
iso

′ ∪ rf
′
e
∪ pf

′ ∪ rb
′ ∪ mo

′ are also available (see 3.4). We then need to prove that 𝑔(so′) ⊆ hb,
which can be checked component by component.

• If (s′1, s′2) ∈ iso
′, then there is𝑛 and e′ = (𝑡, _, (Bcastsv, (𝑥, _, {. . . ;𝑛; . . .}), _)) ∈ 𝐸′ such that

s
′
1 = (e′, aNLR𝑛) and s′2 = (e′, aNRW𝑛). By definition of𝑔, there is e = (𝑡, _, (Put, (𝑥𝑛, 𝑥n(𝑡) , _), _)) ∈
𝑓 −1 (e′) such that 𝑔(s′1) = (e, aNLR𝑛) and 𝑔(s′2) = (e, aNRW𝑛). And by definition of G.iso, we
have (𝑔(s′1), 𝑔(s′2)) ∈ G.iso ⊆ so ⊆ hb.

• By definition 𝑔(rf′) ⊆ rf. We want to show 𝑔(rf′
e
) ⊆ rfe ⊆ so ⊆ hb. Note that for all node 𝑛

and subevent s′ ∈ G′ .R𝑛 ∪G′ .W𝑛 , the function 𝑔 maps to a subevent using the same stamp:
s
′ .𝑎 = 𝑔(s′).𝑎. Also, from the abstraction 𝑓 , we know that 𝑔 preserves the program order: if
(s′1, s′2) ∈ po

′, then (𝑔(s′1), 𝑔(s′2)) ∈ po. Thus 𝑔 preserves the internal/external distinction:
𝑔(rf′

i
) ⊆ rfi and 𝑔(rf′e) ⊆ rfe, which implies 𝑔(rf′

e
) ⊆ hb.

• If (s′1, s′2) ∈ pf
′, then by definition there is 𝑑 , 𝑛, e′1 = (_, _, (Bcastsv, (_, 𝑑, {. . . ;𝑛; . . .}), _)),

and e
′
2 = (_, _, (Waitsv, (𝑑), _)) such that (e′1, e′2) ∈ po

′, s′1 = (e′1, aNLR𝑛), and s
′
2 = (e′2, aWT).

From the abstraction 𝑓 and the definition of 𝑔, there is e1 = (_, _, (Put, (_, _, 𝑑), _)) and
e2 = (_, _, (Wait, (𝑑), _)) such that (e1, e2) ∈ po, 𝑔(s′1) = (e1, aNLR𝑛), and 𝑔(s′2) = (e2, aWT).
This case is illustrated in Fig. 28. We have (e1, aNLR𝑛)

G.iso−−−−→ (e1, aNRW𝑛)
G.pfp
−−−−→ (e2, aWT),

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 51

and so ((e1, aNLR𝑛), (e1, aNLR𝑛)) ∈ G.ib. Since (e1, aNLR𝑛) ∈ G.aNLR𝑛 ⊆ G.Inst, we have
(𝑔(s′1), 𝑔(s′2)) ∈ ([G.Inst];G.ib) ⊆ so ⊆ hb.

• We can check that 𝑔(rb′) ⊆ rb, which intuitively comes from the correspondence between
rf
′/mo

′ and rf/mo. If (s′1, s′2) ∈ rb
𝑛 , then by definition there is 𝑥 such that s′1 ∈ G′ .R𝑛 ,

s
′
2 ∈ G′ .W𝑛

𝑥 , loc(s′1) = 𝑥 = loc(s′2), and either (s′1, s′2) ∈ ((rf′𝑛)−1;mo
′𝑛
𝑥) or s′2 ∉ img(rf′𝑛).

Since G′ .R𝑛 ∩ G′ .W𝑛 = ∅, as the library does not have any read-modify-write method, we
also know s

′
1 ≠ s

′
2 and by definition of 𝑔 that 𝑔(s′1) ≠ 𝑔(s′2).

– If there is s′3 such that (s′3, s′1) ∈ rf
′𝑛 and (s′3, s′2) ∈ mo

′𝑛
𝑥 , then by definition (𝑔(s′3), 𝑔(s′1)) ∈

rf and (𝑔(s′3), 𝑔(s′2)) ∈ mo𝑥𝑛 , so (𝑔(s′1), 𝑔(s′2)) ∈ rb.
– If s′2 ∉ img(rf′𝑛) then 𝑔(s′2) ∉ img(rf) (proved earlier) and (𝑔(s′1), 𝑔(s′2)) ∈ rb.

And so 𝑔(rb′) ⊆ rb ⊆ so ⊆ hb.
• Finally we have 𝑔(mo

′) ⊆ mo ⊆ so ⊆ hb by definition.
Thus 𝑔(so′) ⊆ hb.

Lastly, we are left to prove that [aCR]; (po′−1 ∩ rb
′); [aCW] = ∅. This comes from the fact that

[aCR]; (po−1 ∩ rb); [aCW] ⊆ rbi ⊆ ib, [aCW]; po; [aCR] ⊆ ippo ⊆ ib, and 𝑔(rb′) ⊆ rb (proved earlier).
So if (s′1, s′2) ∈ [aCR]; (po′−1 ∩ rb

′); [aCW], we have (𝑔(s′1), 𝑔(s′2)) ∈ [aCR]; (po−1 ∩ rb); [aCW] ⊆
ib ∩ ib

−1 = ∅ which is not possible, since we know ib is transitive and irreflexive.
Thus G′ is sv-consistent and the implementation 𝐼SV is locally sound. □

Corollary H.2. The implementation 𝐼SV is sound.

H.2 msw Library

Theorem H.3. Given a function size, the implementation 𝐼 sizeMSW (§H.6.1) of the msw library into
rdmawait given in the paper is locally sound.

Proof. We assume an {rdmawait}-consistent execution G = ⟨𝐸, po, stmp, so, hb⟩ which is ab-
stracted via 𝑓 to ⟨𝐸′, po′⟩ that uses the msw library, i.e. abs𝑓

𝐼 sizeMSW ,msw
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩) holds. We

need to provide stmp′, so′, and 𝑔 : ⟨𝐸′, po′, stmp′⟩.SEvent → G.SEvent respecting some conditions.
From ⟨𝐸′, po′⟩, we simply take stmp′ = stmpMSW.
Since the implementation 𝐼 sizeMSW maps events that do not respect the size function to non-

terminating loops, the abstraction 𝑓 tells us that every event in 𝐸′ does respect the size.
Since G is {rdmawait}-consistent, it means (ppo ∪ so)+ ⊆ hb, hb is transitive and irreflexive,

and G is rdmawait-consistent. Firstly, it means that ⟨𝐸, po⟩ respects nodes. From the properties
of abs𝑓

𝐼 sizeMSW ,msw
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩), we can easily see that it implies ⟨𝐸, po⟩ respects nodes, as the

implementation locations are mapped to the same nodes: n(𝑥1) = . . . = n(𝑥size(𝑥)) = n(𝑥).
Secondly, there exists well-formed vR, vW, rf, mo, and nfo such that ib is irreflexive, stmp = stmpRL,
and so = iso ∪ rfe ∪ pfg ∪ nfo ∪ rb ∪mo ∪ ([Inst]; ib).
We define 𝑔 as follows.

• For an event e′ = (𝑡, _, (WriteMSW, (𝑥, 𝑣̃), ())), we choose 𝑔(e′, aCW) = (e, aCW) with e =

(𝑡, _, (Write, (𝑥0, hash(𝑣̃)), ())) ∈ 𝑓 −1 (e′).
• For an event e′ = (𝑡, _, (TryReadMSW, (𝑥), 𝑣̃)), we choose 𝑔(e′, aCR) = (e, aCR) with e =

(𝑡, _, (Read, (𝑥0), 𝑣0)) and 𝑣0 = hash(𝑣̃).
• For an event e′ = (𝑡, _, (TryReadMSW, (𝑥),⊥)), we choose 𝑔(e′, aWT) = (e, aCR) with e =

(𝑡, _, (Read, (𝑥0), 𝑣0))).
• For an event e′ = (𝑡, _, (PutMSW, (𝑥,𝑦, 𝑑), ())), we choose 𝑔(e′, aNLRn(𝑥)) = (e, aNLRn(𝑥0))
and 𝑔(e′, aNRWn(𝑥)) = (e, aNRWn(𝑥0)) with e = (𝑡, _, (Put, (𝑥0, 𝑦0, 𝑑), ()))).

52 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

• For an event e′ = (𝑡, _, (GetMSW, (𝑥,𝑦, 𝑑), ())), we choose 𝑔(e′, aNRRn(𝑦)) = (e, aNRRn(𝑦0))
and 𝑔(e′, aNLWn(𝑦)) = (e, aNLWn(𝑦0)) with e = (𝑡, _, (Get, (𝑥0, 𝑦0, 𝑑), ()))).

• For an event e′ = (𝑡, _, (WaitMSW, (𝑑), ())), we choose 𝑔(e′, aWT) = (e, aWT) with e =

(𝑡, _, (Wait, (𝑑), ()))).
This definition of 𝑔 clearly preserves to (first property to check) using the identity function, since
aCR and aWT have the same relation to other stamps.

Note that for every location 𝑥 , every write subevent on 𝑥0 in the implementation is in the image
of 𝑔.
Now we need to find so

′ such that 𝑔(so′) ⊆ hb and such that G′ = ⟨𝐸′, po′, stmp′, so′, _⟩ is
msw-consistent. For this, we need to choose well-formed v′R, v′W, rf′, mo

′, and nfo
′. We define

v′R (s′) = hash−1 (vR (𝑔(s′))), and similarly for v′W. E.g., when the implementation of PutMSW (𝑥,𝑦, 𝑑)
reads (and writes) the values hash((𝑣1, . . . , 𝑣size(𝑥))), 𝑣 ′1, . . . , 𝑣 ′size(𝑥) , we pretend PutMSW (𝑥,𝑦, 𝑑)
actually reads (𝑣1, . . . , 𝑣size(𝑥)), even if the following data is corrupted and does not correspond
to the hash. For the sake of simplicity, we assume that hash (̃0) = 0, or equivalently that the hash
locations can be initialised to hash (̃0). For WriteMSW events, the v′W function matches the values
written, as required. For a succeeding TryReadMSW event, the if-then-else construct ensures that
the value returned is the inverse of the hash, matching the v′R function as required.
We then define rf

′ =
{
(s′1, s′2)

�� (𝑔(s′1), 𝑔(s′2)) ∈ rf

}
, mo

′ =
{
(s′1, s′2)

�� (𝑔(s′1), 𝑔(s′2)) ∈ mo

}
, and

nfo
′ =

{
(s′1, s′2)

�� (𝑔(s′1), 𝑔(s′2)) ∈ nfo

}
, and they are well-formed:

• If (s′1, s′2) ∈ rf
′, then we have v′W (s′1) = hash−1 (vW (𝑔(s′1))) = hash−1 (vR (𝑔(s′2))) = v′R (s′2). If

s
′
2 ∉ img(rf′) on location 𝑥 , then since every write subevent on 𝑥0 in the implementation is
in the image of 𝑔 we have 𝑔(s′2) ∉ img(rf) and v′R (s′2) = hash−1 (vR (𝑔(s′2))) = hash−1 (0) = 0̃.

• mo
′
𝑥 is total on G′ .W𝑥 since mo𝑥0 is total on G.W𝑥0 and every write on 𝑥0 is in the image

of 𝑔.
• If t(s′1) = t(s′2) and (s′1, s′2) ∈ G′ .aNLR𝑛 × G′ .aNLW𝑛 (resp. G′ .aNRR𝑛 × G′ .aNRW𝑛) then
t(𝑔(s′1)) = t(s′1) = t(s′2) = t(𝑔(s′2)) and (𝑔(s′1), 𝑔(s′2)) ∈ G.aNLR𝑛×G.aNLW𝑛 . So (𝑔(s′1), 𝑔(s′2)) ∈
nfo ∪ nfo

−1 and we also have (s′1, s′2) ∈ nfo
′ ∪ nfo

′−1.
It is straightforward to see that 𝑔(rf′) ⊆ rf, 𝑔(mo

′) ⊆ mo, 𝑔(nfo′) ⊆ nfo, 𝑔(pfg′) ⊆ pfg,
𝑔(pfp′) ⊆ pfp, 𝑔(ippo′) ⊆ ippo, 𝑔(ppo′) ⊆ ppo, 𝑔(rf′

e
) ⊆ rfe, and 𝑔(iso′) ⊆ iso. The only non-

obvious relation might be 𝑔(rb′) ⊆ rb. Let (s′1, s′2) ∈ rb
′:

• If s′2 ∉ img(rf′), as mentioned earlier we have 𝑔(s′2) ∉ img(rf) and thus (𝑔(s′1), 𝑔(s′2)) ∈ rb.
• If there is s′3 such that (s′3, s′1) ∈ rf

′ and (s′3, s′2) ∈ mo
′, then we have (𝑔(s′3), 𝑔(s′1)) ∈ rf and

(𝑔(s′3), 𝑔(s′2)) ∈ mo, and so (𝑔(s′1), 𝑔(s′2)) ∈ rb.
And of course 𝑔(rb′

i
) ⊆ rbi also holds since the stamps are preserved.

Thus we have 𝑔(ib′) ⊆ ib, implying ib
′ is irreflexive, 𝑔(so′) ⊆ so ⊆ hb, and we have G′ =

⟨𝐸′, po′, stmp′, so′, _⟩ is msw-consistent. □

Corollary H.4. The implementation 𝐼 sizeMSW is sound.

H.3 bal Library

Theorem H.5. Given a function b, the implementation 𝐼 bBAL of the bal library into sv given in the
paper is locally sound.

Proof. We assume an {sv}-consistent execution G = ⟨𝐸, po, stmp, so, hb⟩ which is abstracted
via 𝑓 to ⟨𝐸′, po′⟩ that uses the bal library, i.e. abs𝑓

𝐼 bBAL,bal
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩) holds. We need to provide

stmp′, so′, and 𝑔 : ⟨𝐸′, po′, stmp′⟩.SEvent → G.SEvent respecting some conditions. From ⟨𝐸′, po′⟩,
we simply take stmp′ = stmpBAL.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 53

Since G is {sv}-consistent, it means (ppo ∪ so)+ ⊆ hb, hb is transitive and irreflexive, and G
is sv-consistent. Firstly, it means that for all thread 𝑡 we have po|𝑡 is a strict total order. From
the properties of abs𝑓

𝐼 bBAL,bal
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩), we can easily see that it implies po′ |𝑡 is also a strict

total order. Secondly, stmp = stmpSV and there exists well-formed vR, vW, rf, and mo such that
[aCR]; (po−1 ∩ rb); [aCW] = ∅ and so = iso ∪ rfe ∪ pf ∪ rb ∪mo.
By definition of the abstraction, for each event e′ = (𝑡, _, (BARbal, (𝑥), ())) ∈ 𝐸′ we have

⟨⟨(), 0⟩, ⟨𝐸, po⟩| 𝑓 −1 (e′)⟩ ∈ J𝐼 bBAL (𝑡, BARbal, (𝑥))K𝑡 . Since by definition Jloop{()}K𝑡 = ∅, we necessarily
have 𝑡 ∈ b(𝑥). We note 𝑠𝑛 = {n(𝑡𝑖) | 𝑡𝑖 ∈ b(𝑥)} the nodes involved in the barrier. The size of 𝐸 | 𝑓 −1 (e′)
depends on howmany times the loops read the locations of other threads, but this subgraph contains
at least the global fence e𝐺𝐹 = (𝑡, _, (GFsv, (𝑠𝑛), ())), the first read e𝐹𝑅 = (𝑡, _, (Readsv, (𝑥𝑡), (𝑣))),
the write e𝑊 = (𝑡, _, (Writesv, (𝑥𝑡 , 𝑣 + 1), ())), and the last read e𝐿𝑅 = (𝑡, _, (Readsv, (𝑥𝑡𝑘), (𝑣 ′)))
with 𝑣 ′ > 𝑣 , such that for any other event e0 ∈ 𝐸 | 𝑓 −1 (e′) besides these four, we have e𝐺𝐹

po

−−→
e𝐹𝑅

po

−−→ e𝑊

po

−−→ e0
po

−−→ e𝐿𝑅 . If all threads are not on the same nodes, we also have a broadcast event
e𝐵𝑅 = (𝑡, _, (Bcastsv, (𝑥𝑡 , _, (𝑠𝑛 \ {n(𝑡)})), ())) with e𝑊

po

−−→ e𝐵𝑅 .
We define 𝑔 as expected: 𝑔(e′, aGF𝑛) ≜ (e𝐺𝐹 , aGF𝑛) for 𝑛 ∈ 𝑠𝑛 , and 𝑔(e′, aCR) ≜ (e𝐿𝑅, aCR). This

clearly preserves to (first property of 𝑔) using the identity function.
We also define 𝑜 (e′) ≜ 𝑣 + 1, i.e. the value written by e𝑊 . For a location 𝑥 , we note 𝑐𝑥 ≜

max(e′∈𝐸′𝑥)𝑜 (e′) the maximum value attributed to a barrier call on 𝑥 . We are forced to take the only
valid synchronisation order so′ =

⋃
𝑥∈Loc

⋃
1≤𝑖≤𝑐𝑥

{
((e′1, aGF𝑛), (e′2, aCR))

��
e
′
1, e

′
2 ∈ (𝐸′𝑥 ∩ 𝑜−1 (𝑖))

}
and we need to show that 𝑔(so′) ⊆ hb and that G′ = ⟨𝐸′, po′, stmp′, so′, _⟩ is bal-consistent.
Let us start with the conditions on G′, where we need to check that 𝑐𝑥 and 𝑜 respect some

properties. By definition, for e′ ∈ 𝐸′𝑥 we have 1 ≤ 𝑜 (e) ≤ 𝑐𝑥 . For a thread 𝑡 ∉ b(𝑥), we have seen
that the implementation prevents any event on 𝑥 . For a thread 𝑡 ∈ b(𝑥), we will show #(𝐸′𝑥 |𝑡) = 𝑐𝑥
by checking that every number from 1 to 𝑐𝑥 is attributed once.
Note that, for a given thread 𝑡 and location 𝑥 , since 𝐸′ only contains barrier calls, only the

events e𝑊 of the form (𝑡, _, (Writesv, (𝑥𝑡 , 𝑣 + 1), ())) are able to modify the value of 𝑥𝑡 on node
n(𝑡)5. Similarly, the value of 𝑥𝑡 on another node can only be modified by a broadcast event from
the thread 𝑡 , thus copying the value written by an e𝑊 event.
Firstly, let us show 𝑐𝑥 is attributed on every participating thread 𝑡 . By definition of 𝑐𝑥 there is

e
′
0 on thread 𝑡0 writing 𝑐𝑥 . From the definition of the implementation of e′0, there is a loop that
only finishes when reading 𝑥𝑡 with value 𝑣 ′ ≥ 𝑐𝑥 . This value 𝑣 ′ can only be is created by an event
e
′ ∈ 𝐸′𝑥 |𝑡 , and we have 𝑜 (e′) = 𝑣 ′ ≥ 𝑥𝑘 . Since 𝑐𝑥 is defined as the maximum of such values, we have
𝑣 ′ = 𝑐𝑥 and 𝑐𝑥 is attributed on 𝑡 .

Secondly, let us show that if 𝑣 + 2 is attributed, then 𝑣 + 1 is attributed. This is simply because
if 𝑜 (e′2) = 𝑣 + 2, i.e. the implementation of e′2 writes 𝑣 + 2, then the initial read events e𝐹𝑅 =

(𝑡, _, (Readsv, (𝑥𝑡), (𝑣 + 1))) ∈ 𝑓 −1 (e′2) reads the value 𝑣 + 1. As before, this value can only be is
created by an event e′1 ∈ 𝐸′𝑥 |𝑡 , and we have 𝑜 (e′1) = 𝑣 + 1.
Thirdly, let us show that if e′1, e′2 ∈ 𝐸′𝑥 and (e′1, e′2) ∈ po

′ then 𝑜 (e′1) < 𝑜 (e′2). By contradiction, let
us assume (e′1, e′2) ∈ po

′ |imm the first pair (in po
′ |𝐸′𝑥 order) such that 𝑜 (e′1) = 𝑖 + 1 ≥ 𝑗 + 1 = 𝑜 (e′2).

As previously, their implementations have events e1
𝐹𝑅

= (𝑡, _, (Readsv, (𝑥𝑡), (𝑖))) ∈ 𝑓 −1 (e′1), e1𝑊 =

(𝑡, _, (Writesv, (𝑥𝑡 , 𝑖+1), ())) ∈ 𝑓 −1 (e′1), and e2𝐹𝑅 = (𝑡, _, (Readsv, (𝑥𝑡), (𝑗))) ∈ 𝑓 −1 (e′2), with e1𝐹𝑅
po

−−→
e
1
𝑊

po

−−→ e
2
𝐹𝑅
. Let 𝑠2 = (e2

𝐹𝑅
, aCR) and 𝑠1 = (e1

𝑊
, aCW). Since we know [aCR]; (po−1 ∩ rb); [aCW] = ∅,

showing (𝑠2, 𝑠1) ∈ rb would be a contradiction.
• If (_, 𝑠2) ∉ rf (i.e. 𝑗 = 0), then (𝑠2, 𝑠1) ∈ rb is a contradiction.

5This is why the broadcast event must not overwrite 𝑥𝑡 with itself on node n(𝑡) .

54 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

• If (𝑠3, 𝑠2) ∈ rf with (𝑠2, 𝑠3) ∈ po, then since 𝑠3 uses the stamp aCWwe have (𝑠2, 𝑠3) ∈ ppo ⊆ hb

and (𝑠3, 𝑠2) ∈ rfe ⊆ so ⊆ hb. Thus we have an hb cycle, which is a contradiction.
• If (𝑠3, 𝑠2) ∈ rf with (𝑠3, 𝑠2) ∈ po, since (e′1, e′2) ∈ po

′ |imm there is no write in-between 𝑠1
and 𝑠2 and thus (𝑠3, 𝑠1) ∈ po. Since mo

n(𝑡)
𝑥𝑡 is included in hb and only uses the stamp aCW, it

coincides with po and so (𝑠3, 𝑠1) ∈ mo and (𝑠2, 𝑠1) ∈ rb is a contradiction.
Thus (e′1, e′2) ∈ po

′ implies 𝑜 (e′1) < 𝑜 (e′2).
By combining the pieces above, every number from 1 to 𝑐𝑥 is attributed exactly once and

#(𝐸𝑥 |𝑡) = 𝑐𝑥 . This concludes the properties on G′ and we have that G′ = ⟨𝐸′, po′, stmp′, so′, _⟩ is
bal-consistent.

Finally, the last part of the proof is to check that 𝑔(so′) ⊆ hb. Let us assume 𝑠′1 = (e′1, aGF𝑛), 𝑠′2 =
(e′2, aCR), and (𝑠′1, 𝑠′2) ∈ so

′ for some 𝑥 and 𝑖 on threads 𝑡1 and 𝑡2. So e′1, e′2 ∈ 𝐸′𝑥 and 𝑜 (e′1) = 𝑜 (e′2) = 𝑖 .
By definition of the implementation and 𝑔 we have e1

𝐺𝐹

po

−−→ e
1
𝑊

in 𝑓 −1 (e′1) with 𝑔(𝑠′1) = (e1
𝐺𝐹
, aGF𝑛),

as well as e2
po

−−→ e
2
𝐿𝑅

in 𝑓 −1 (e′2) with 𝑔(𝑠′2) = (e𝐿𝑅, aCR) and e
2 = (𝑡2, _, (Readsv, (𝑥𝑡1), (𝑣 ′))) is the

last read of the loop for thread 𝑡1 reading a value 𝑣 ′ ≥ 𝑖 . In the very specific case where 𝑡1 = 𝑡2, we
have (𝑔(𝑠′1), 𝑔(𝑠′2)) ∈ ppo ⊆ hb. Otherwise, let 𝑠1 = (e1

𝑊
, aCW) and 𝑠2 = (e2, aCR). By definition of to

we have (𝑔(𝑠′1), 𝑠1) ∈ ppo ⊆ hb and (𝑠2, 𝑔(𝑠′2)) ∈ ppo ⊆ hb, so we are left to prove (𝑠1, 𝑠2) ∈ hb.
If 𝑡1 and 𝑡2 are on the same node, there is no broadcast involved. If 𝑠2 reads from 𝑠1 (i.e. 𝑣 ′ = 𝑖), then

we immediately have (𝑠1, 𝑠2) ∈ rfe ⊆ so ⊆ hb. Else (i.e. 𝑣 ′ > 𝑖) 𝑠2 reads from some subevent (e3, aCW)
on thread 𝑡1 in the implementation of a later barrier, with 𝑜 (𝑓 (e3)) = 𝑣 ′. From the properties of 𝑜
and the abstraction we have (e1

𝑊
, e3) ∈ po. So (𝑠1, 𝑠2) ∈ (ppo; rfe) ⊆ hb.

If 𝑡1 and 𝑡2 are on different nodes 𝑛1 and 𝑛2, the reasoning is similar except a broadcast from 𝑡1
bridges the gap. There is e𝐵 = (𝑡1, _, (Bcastsv, (𝑥𝑡1 , _, {. . . ;𝑛2; . . .}), ())) such that
((e𝐵, aNLR𝑛2), (e𝐵, aNRW𝑛2)) ∈ iso ⊆ hb, ((e𝐵, aNRW𝑛2), 𝑠2) ∈ rfe ⊆ hb, and (e𝐵, aNRW𝑛2) reads
the same value 𝑣 ′. We fall back to the previous case: if (e𝐵, aNRW𝑛2) reads from 𝑠1 we have
(𝑠1, (e𝐵, aNRW𝑛2)) ∈ rfe ⊆ hb; if it reads from a later write we have (𝑠1, (e𝐵, aNRW𝑛2)) ∈ (ppo; rfe) ⊆
hb. In all cases, we have (𝑠1, 𝑠2) ∈ hb. □

Corollary H.6. The implementation 𝐼 bBAL is sound.

H.4 rbl Library

Theorem H.7. Given the functions wthd and rthd and a size 𝑆 , the implementation 𝐼 wthd,rthdS,RBL of
the rbl library into sv given in the paper is locally sound.

Proof. We assume an {sv}-consistent execution G = ⟨𝐸, po, stmp, so, hb⟩ which is abstracted
via 𝑓 to ⟨𝐸′, po′⟩ that uses the rbl library, i.e. abs𝑓

𝐼
wthd,rthd
S,RBL ,rbl

(⟨𝐸, po⟩, ⟨𝐸′, po′⟩) holds. We need to
provide stmp′, so′, and 𝑔 : ⟨𝐸′, po′, stmp′⟩.SEvent → G.SEvent respecting some conditions. From
⟨𝐸′, po′⟩, we simply take stmp′ = stmpRBL.
Since the implementation 𝐼

wthd,rthd
S,RBL maps events that do not respect rthd or wthd to non-

terminating loops, the abstraction 𝑓 tells us that every event in 𝐸′ does respect these functions.
Since G is {sv}-consistent, it means (ppo ∪ so)+ ⊆ hb, hb is transitive and irreflexive, and G

is sv-consistent. Firstly, it means that for all thread 𝑡 we have po|𝑡 is a strict total order. From
the properties of abs𝑓

𝐼
wthd,rthd
S,RBL ,rbl

(⟨𝐸, po⟩, ⟨𝐸′, po′⟩), we can easily see that it implies po′ |𝑡 is also a
strict total order. Secondly, stmp = stmpSV and there exists well-formed vR, vW, rf, andmo such that
[aCR]; (po−1 ∩ rb); [aCW] = ∅ and so = iso ∪ rfe ∪ pf ∪ rb ∪mo. Note that here mo is necessarily
included in ppo and is not relevant by itself.

Let us define 𝑔.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 55

• For e′ = (𝑡, _, (SubmitRBL, (𝑥, 𝑣̃), true)), from the definition of the implementation and the ab-
straction 𝑓 , there is some events e𝑤 = (𝑡, _, (Writesv, (ℎ𝑥 , 𝑣), ())) and
e𝑏 = (𝑡, _, (Bcastsv, (ℎ𝑥 , 𝑑𝑥 , 𝑠𝑛), ())) in 𝑓 −1 (e′), where 𝑠𝑛 = {n(𝑡𝑖) | 𝑡𝑖 ∈ rthd(𝑥)} \ {n(𝑡)}.
We define 𝑔(e′, aCW) = (e𝑤, aCW), and for every 𝑛 ∈ 𝑠𝑛 we define 𝑔(e′, aNRW𝑛) = (e𝑏, aNRW𝑛).

• For e
′ = (𝑡, _, (SubmitRBL, (𝑥, 𝑣̃), false)), the first event of the implementation is

e𝑟 = (𝑡, _, (Readsv, (ℎ𝑥), 𝑣)) and we define 𝑔(e′, aWT) = (e𝑟 , aCR).
• For e′ = (𝑡, _, (ReceiveRBL, (𝑥), 𝑟)), the second event of the implementation is of the form
e𝑟 = (𝑡, _, (Readsv, (ℎ𝑥), 𝑣)). If the ReceiveRBL succeeds (i.e. 𝑟 = 𝑣̃) we define 𝑔(e′, aCR) =
(e𝑟 , aCR). If the ReceiveRBL fails (i.e. 𝑟 = ⊥) we define 𝑔(e′, aWT) = (e𝑟 , aCR).

Since the stamps aCR and aWT have the same relations to other stamps (see Fig. 10), the first property
of 𝑔 holds.
For every event in 𝐸′, we note in and out the values of the corresponding counter (ℎ𝑥 for a

SubmitRBL, ℎ𝑥𝑡𝑖 for a Receive
RBL) before and after the function call.

• For e′ = (𝑡, _, (SubmitRBL, (𝑥, 𝑣̃), 𝑟)) ∈ 𝐸′, there is some event e𝑟 = (𝑡, _, (Readsv, (ℎ𝑥), 𝑣)) ∈
𝑓 −1 (e′). We define in(e′) = 𝑣 . If this function fails (i.e. 𝑟 = false), we define out(e′) = 𝑣
as well. Otherwise, from the implementation there is e𝑤 = (𝑡, _, (Writesv, (ℎ𝑥 , 𝑣 ′), ())) ∈
𝑓 −1 (e′) and we define out(e′) = 𝑣 ′.

• Similarly for e′ = (𝑡, _, (ReceiveRBL, (𝑥), 𝑟)) ∈ 𝐸′. There is e𝑟 = (𝑡, _, (Readsv, (ℎ𝑥𝑡), 𝑣)) ∈
𝑓 −1 (e′), and in case of success there is e𝑤 = (𝑡, _, (Writesv, (ℎ𝑥𝑡 , 𝑣 ′), _)) ∈ 𝑓 −1 (e′). For a
failure we have in(e′) = out(e′) = 𝑣 , and for a success in(e′) = 𝑣 and out(e′) = 𝑣 ′.

We extend the notation to subevents: in((e′, 𝑎)) ≜ in(e′), and similarly for out. We have some
basic properties about in and out.

• The first event of each thread has an in value of 0, and we always have 0 ≤ in(e′) ≤ out(e′)
• For an event e′ with label (SubmitRBL, (𝑥, (𝑣1, . . . , 𝑣𝑉)), true), we have out(e′) = in(e′) +
𝑉 + 1

• For an event e′ with label (ReceiveRBL, (𝑥), (𝑣1, . . . , 𝑣𝑉)), we have out(e′) = in(e′) +𝑉 + 1
• Let 𝐸′ |SubmitRBL,𝑥 be the subset of 𝐸′ for calls to SubmitRBL on 𝑥 , and po

′ |SubmitRBL,𝑥 the
corresponding subset of po′. If (e′1, e′2) ∈ (po′ |SubmitRBL,𝑥) |imm, then out(e′1) = in(e′2). I.e., if
we have two consecutive SubmitRBL calls (e′1 and e

′
2) on 𝑥 , the value of ℎ𝑥 at the end of the

execution of e′1 is equal to the value at the beginning of the execution of e′2.
This comes from the semantics of sv. A Readsv is required to read the last value written
in program order. It cannot read from another thread or a broadcast as there is no other
writing on ℎ𝑥 by definition of the implementation. It cannot read from a later write, since
[aCW]; (rf ∩ po

−1); [aCR] ⊆ (rfe ∩ ppo
−1) ⊆ (hb∩ hb

−1) = ∅. It cannot read from an earlier
write than the last, since [aCR]; (po−1 ∩ rb); [aCW] = ∅.

• Similarly for ReceiveRBL, we can define 𝐸′ |ReceiveRBL,𝑥 and po
′ |ReceiveRBL,𝑥 . If (e′1, e′2) ∈

(po′ |ReceiveRBL,𝑥) |imm, then out(e′1) = in(e′2) by the same reasoning.
We then choose the following relation rf

′.

rf
′ ≜

⋃
𝑛,𝑥

rf
′𝑛
𝑥 rf

′𝑛
𝑥 ≜ (W𝑛

𝑥 × R𝑛𝑥) ∩
{
(s′1, s′2)

�� in(s′1) = in(s′2)
}

We take so′ = rf
′ ∪ fb

′, where fb′ ≜
⋃
𝑛,𝑥

(
G′ .F 𝑛

𝑥 × G′ .W𝑛
𝑥 \ (po′−1; rf′−1)

)
. We need to prove

that 𝑔(so′) ⊆ hb and that G′ = ⟨𝐸′, po′, stmp′, so′, _⟩ is rbl-consistent. Since 𝐸′ respects the
functions rthd and wthd, we only need to check that rf′ is well-formed for the latter.

As an intermediary result, let us show that if (s′1, s′2) ∈ rf
′, with s

′
1 = (e′1, aNRW𝑛) and s

′
2 =

(e′2, aCR) (i.e. they are on a location 𝑥 with in(e′1) = in(e′2)), then the two events write/read the

56 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

same tuple 𝑣̃ and we have out(e′1) = out(e′2). We have e′1 = (𝑡1, _, (SubmitRBL, (𝑥, 𝑣̃), true)) and
e
′
2 = (𝑡2, _, (ReceiveRBL, (𝑥), 𝑣̃ ′)). Let us name 𝐻 = in(e′1), 𝑉 = len(𝑣̃), and 𝑉 ′ = len(𝑣̃ ′). we aim
to show that 𝑣̃ = 𝑣̃ ′, which would also imply out(e′1) = in(e′1) +𝑉 + 1 = in(e′2) +𝑉 ′ + 1 = out(e′2).

From the implementation of e′1, we have e𝑤1 = (𝑡1, _, (Writesv, (ℎ𝑥 , 𝐻 +𝑉 +1), ())) ∈ 𝑓 −1 (e′1) and
e𝑏1 = (𝑡1, _, (Bcastsv, (ℎ𝑥 , 𝑑𝑥 , _), ())) ∈ 𝑓 −1 (e′1). We necessarily have ((e𝑤1 , aCW), (e𝑏1 , aNLR𝑛)) ∈ rf,
and thus vW ((e𝑏1 , aNRW𝑛)) = vR ((e𝑏1 , aNLR𝑛)) = 𝐻 + 𝑉 + 1 = out(e′1). This is because e𝑏1 cannot
read from an earlier read, as that would be ignoring e𝑤1 which is forbidden (from rb ∈ so), and
cannot read from a later read because of the Waitsv (𝑑𝑥) operation (from pf ∈ so) placed within
each successful execution of SubmitRBL (𝑥, _), making sure ℎ𝑥 is read by the broadcast before we
can modify it again. This also holds for any broadcast on ℎ𝑥 of other events.
From the implementation of e′2 we have e𝑟 = (𝑡2, _, (Readsv, (ℎ𝑥), 𝐻 ′)) ∈ 𝑓 −1 (e′2). From the

inequality in the implementation we have 𝐻 ′ > 𝐻 = in(e′2), so 𝐻 ′ ≠ 0 and the value is read from a
broadcast from thread 𝑡1. There is e′3 ∈ 𝐸′ such that e𝑏3 = (𝑡1, _, (Bcastsv, (ℎ𝑥 , 𝑑𝑥 , _), ())) ∈ 𝑓 −1 (e′3)
with vW ((e𝑏3 , aNRW𝑛)) = 𝐻 ′ = out(e′3) and ((e𝑏3 , aNRW𝑛), (e𝑟 , aCR)) ∈ rfe. We might have e′1 = e

′
3

and e𝑏1 = e𝑏3 , but not necessarily. Since out(e′3) = 𝐻 ′ > 𝐻 = in(e′1), we necessarily have
(e′1, e′3) ∈ (po′)∗ and thus by transitivity ((e𝑏1 , aNRW𝑛), (e𝑟 , aCR)) ∈ hb. Note that this can be
written (𝑔(s′1), 𝑔(s′2)) ∈ hb, which proves 𝑔(rf′) ⊆ hb.

The implementation of e
′
1 makes several write and broadcast events of the form

e𝑤𝑖
= (𝑡1, _, (Writesv, (𝑥𝑖 , 𝑣𝑖), ())) ∈ 𝑓 −1 (e′1) and e𝑏𝑖 = (𝑡1, _, (Bcastsv, (𝑥𝑖 , _, _), ())) ∈ 𝑓 −1 (e′1),

with 𝑖 = (𝐻 + 𝑘)%𝑆 for 0 ≤ 𝑘 ≤ 𝑉 . Note: no location 𝑥𝑖 is written twice, since 𝑉 + 1 ≤ 𝑆 from the
condition in the implementation. Similarly, the implementation of e′2 makes several read events of
the form e𝑟𝑖 = (𝑡2, _, (Readsv, (𝑥𝑖), 𝑣 ′𝑖)) ∈ 𝑓 −1 (e′2). It would be enough to check that each of these
read event reads the value written by the corresponding write (i.e. 𝑣𝑖 = 𝑣 ′𝑖).

Firstly, the value written is available. We have (e𝑤𝑖
, aCW)

ppo

−−→ (e𝑏𝑖 , aNLR𝑛)
iso−−→ (e𝑏𝑖 , aNRW𝑛)

ppo

−−→
(e𝑏1 , aNRW𝑛)

hb−−→ (e𝑟 , aCR)
ppo

−−→ (e𝑟𝑖 , aCR), so since hb is transitive and irreflexive this implies
((e𝑏𝑖 , aNLR𝑛), (e𝑤𝑖

, aCW)) ∉ rb and ((e𝑟𝑖 , aCR), (e𝑏𝑖 , aNRW𝑛)) ∉ rb, and we cannot read from earlier
values.

Secondly, we need to check that e𝑏𝑖 and e𝑟𝑖 cannot read from later values. Let us take e𝑤′
𝑖
=

(𝑡1, _, (Writesv, (𝑥𝑖 , _), ())) ∈ 𝑓 −1 (e′3) and e𝑏′𝑖 = (𝑡1, _, (Bcastsv, (𝑥𝑖 , _, _), ())) ∈ 𝑓 −1 (e′3) from some
later (in po

′) successful SubmitRBL e′3 on 𝑥 . We use the index _3 to indicate values of the execution
of e′3. We have 𝑖 of the form (𝐻3 + 𝑘3)%𝑆 , for some 0 ≤ 𝑘3 ≤ 𝑉3. Since (e′1, e′3) ∈ po

′ we have
𝐻3 = in(e′3) ≥ out(e′1) > (𝐻 + 𝑘). Thus from (𝐻 + 𝑘)%𝑆 = 𝑖 = (𝐻3 + 𝑘3)%𝑆 we have 𝐻 + 𝑘 + 𝑆 ≤
𝐻3 + 𝑘3 ≤ 𝐻3 + 𝑉3, i.e. the indices before modulo differ by at least the size 𝑆 of the buffer. From
the condition in the implementation of SubmitRBL, we have (𝐻3 − 𝑀3) + (𝑉3 + 1) ≤ 𝑆 , and so
𝑀3 ≥ 𝐻3 +𝑉3 −𝑆 + 1 ≥ 𝐻 +𝑘 + 1 > 𝐻 = in(e′2). Intuitively, this large value of𝑀3 indicates that e′2 is
already finished. The implementation of e′3 makes a read e𝑟3 = (𝑡1, _, (Readsv, (ℎ𝑥𝑡2), 𝑣3)) with 𝑣3 ≥
𝑀3 > in(e′2). The implementation of e′2 makes a write e𝑤2 = (𝑡2, _, (Writesv, (ℎ𝑥𝑡2 , out(e

′
2)), ())).

By our properties of in and out, this is the first write on ℎ𝑥𝑡2 with value greater than 𝐻 . Thus
we have ((e𝑤2 , aCW), (e𝑟3 , aCR)) ∈ hb by ppo transitivity to the write being read, and via the
intermediary of some broadcast. Since ((e𝑟𝑖 , aCR), (e𝑤2 , aCW)) ∈ ppo, ((e𝑟3 , aCR), (e𝑤′

𝑖
, aCW))) ∈ ppo

(thus ((e𝑏𝑖 , aNLR𝑛), (e𝑤′
𝑖
, aCW))) ∈ hb), and ((e𝑟3 , aCR), (e𝑏′𝑖 , aNRW𝑛))) ∈ ppo, we have that e𝑟𝑖 cannot

read from a later broadcast and e𝑏𝑖 cannot read from a later write.
Thus 𝑣̃ = 𝑣̃ ′ and out(e′1) = out(e′2), which concludes our intermediary result. The same property

holds for ((e′1, aCW), (e′2, aCR)) ∈ rf
′ for similar reasons. Except that if both threads are on the same

node the reader can directly read the data without the help of broadcasts.

From this intermediary result, it is easy to check that rf′ is well-formed.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 57

• rf
′ is total and functional on its range. It is functional as two different successful SubmitRBL

events on 𝑥 necessarily have different in values. We can check rf′−1 is total by contradiction,
by taking the first (lowest in value) event s′𝑟 ∈ G′ .R𝑛𝑥 that is not related in rf

′. If there is
s
′
2 ∈ G′ .R𝑛𝑥 with (s′2, s′𝑟) ∈ (po′ |ReceiveRBL,𝑥) |imm, then by hypothesis there is s′1 such that
(s′1, s′2) ∈ rf

′. From our intermediary result we have in(s′𝑟) = out(s′2) = out(s′1). If there is
a next successful SubmitRBL event s′𝑤 , then it would necessarily have in(s′𝑤) = out(s′1) =
in(s′𝑟), and thus we would have (s′𝑤, s′𝑟) ∈ rf

′, a contradiction. Such an event must exist
because s′𝑟 is successful: from the implementation, s′𝑟 reads ℎ𝑥 and finds a value strictly
higher than out(s′1), which requires the existence of later SubmitRBL events.

• Events related in rf
′ write and read the same tuple of values, from our intermediary result.

• Each thread can read each value once. This is because two successful ReceiveRBL calls
on 𝑥 from the same thread will have different in values and cannot read from the same
SubmitRBL.

• Threads cannot jump a value. This is easily checked by induction. The first successful
ReceiveRBL (with in value 0) must read the first successful SubmitRBL (with in value 0).
Whenever a successful ReceiveRBL occurs reading a specific SubmitRBL, the following
successful SubmitRBL/ReceiveRBL events will have the same in value, and thus have to be
related by rf

′.
Finally, we are left to prove that 𝑔(so′) ⊆ hb. During the proof of the intermediary result,

we already checked 𝑔(rf′) ⊆ hb. Let (s′
𝑓
, s′𝑤) ∈ fb

′, where s
′
𝑓
∈ G′ .F 𝑛

𝑥 is a failed ReceiveRBL

on 𝑥 and s
′
𝑤 ∈ G′ .W𝑛

𝑥 a successful SubmitRBL. We will assume they are on different nodes,
s
′
𝑓
= (e′

𝑓
, aWT) and s′𝑤 = (e′𝑤, aNRW𝑛), but the same reasoning can be adapted (without the broadcasts)

to threads on the same node. Note that we necessarily have in(e′
𝑓
) ≥ in(e′𝑤). By contradiction,

if we had in(e′𝑤) < in(e′
𝑓
) then by induction and using our intermediary result we can see there

is s′𝑟 ∈ G′ .R𝑛𝑥 such that (s′𝑟 , s′𝑓) ∈ po
′ and in(s′𝑟) = in(s′𝑤), thus (s′𝑤, s′𝑟) ∈ rf

′ contradicting
(s′
𝑓
, s′𝑤) ∈ fb

′. The implementation of e′
𝑓
comprises two events: e1 = (𝑡𝑓 , _, (Readsv, (ℎ𝑥𝑡𝑓), 𝐻))

and e2 = (𝑡𝑓 , _, (Readsv, (ℎ𝑥), 𝐻 ′)) with 𝐻 ′ ≤ 𝐻 = in(e′
𝑓
). The implementation of e′𝑤 ends with

two events: e3 = (𝑡𝑤, _, (Writesv, (ℎ𝑥 , out(e′𝑤)), ())) and e4 = (𝑡𝑤, _, (Bcastsv, (ℎ𝑥 , 𝑑𝑥 , _), ())). We
have 𝑔(s′

𝑓
) = (e2, aCR) and 𝑔(s′𝑤) = (e4, aNRW𝑛), both events accessing the location ℎ𝑥 . As seen

previously, we have vW ((e4, aNRW𝑛)) = out(e′𝑤) as the broadcast can only read from e3. We have
vR (𝑔(s′𝑓)) = 𝐻

′ ≤ in(e′
𝑓
) ≤ in(e′𝑤) < out(e′𝑤) = vW (𝑔(s′𝑤)). Since the value of ℎ𝑥 increases, we

necessarily have (𝑔(s′
𝑓
), 𝑔(s′𝑤)) ∈ rb ⊆ so ⊆ hb. □

Corollary H.8. The implementation 𝐼 wthd,rthdS,RBL is sound.

H.5 rdma
wait

to rdma
tso

Theorem H.9. Let p̃ be a program using only the rdmawait library. Then we have
outcomerdmatso (Tp̃U𝐼W) ⊆ outcome{rdmawait } (p̃).
Proof. By definition, we are given G = ⟨𝐸, po, stmp, so⟩ rdmatso-consistent (Definition G.1)

such that ⟨̃𝑣, ⟨𝐸, po⟩⟩ ∈ JTp̃U𝐼WK. Among others, it means ⟨𝐸, po⟩ respects nodes and there exists
well-formed vR, vW, rf, mo, nfo, and pf such that ib is irreflexive, stmp = stmpTSO, so = iso ∪ rfe ∪
[aNLW]; pf ∪ nfo ∪ rb ∪mo ∪ ([Inst]; ib), and hb ≜ (ppo ∪ so)+ is irreflexive.
From Lemma F.2, since p̃ uses only rdmawait, there is 𝐸′, po′, 𝑓 such that ⟨̃𝑣, ⟨𝐸′, po′⟩⟩ ∈ J̃pK and

abs
𝑓

𝐼W,rdmawait
(⟨𝐸, po⟩, ⟨𝐸′, po′⟩). Note that this clearly implies ⟨𝐸, po⟩ also respects nodes, as the

implementation 𝐼W keeps the same locations. Our objective is to find stmp′, so′, and hb
′ such that

G′ = ⟨𝐸′, po′, stmp′, so′, hb′⟩ is {rdmawait}-consistent (Definitions 3.6 and G.2). Of course, we pick

58 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

stmp′ ≜ stmpRL as it is the only choice for consistency. We will also pick hb′ ≜ (ppo′ ∪ so
′)+ since

there is no external constraints. Thus, we only need to carefully pick so
′ and show it works.

While our objective is not exactly local soundness (Definition 3.13), we still use a concretisation
function 𝑔 : ⟨𝐸′, po′, stmp′⟩.SEvent → G.SEvent to then define so′.

• For e′ = (𝑡, _, (Write, (𝑥, 𝑣), ())), from the definition of the implementation 𝐼W and the
abstraction 𝑓 , there is some event e = (𝑡, _, (WriteTSO, (𝑥, 𝑣), ())) ∈ 𝑓 −1 (e′). We define
𝑔(e′, aCW) = (e, aCW). For events calling Read, CAS, Mfence, and Rfence, we proceed similarly
and let 𝑔 map each subevent to their counterpart in the implementation.

• For e′ = (𝑡, _, (Get, (𝑥,𝑦, 𝑑), ())), there is some event e = (𝑡, _, (GetTSO, (𝑥,𝑦), (𝑣))) ∈
𝑓 −1 (e′). We define 𝑔(e′, aNRR𝑛 (𝑦)) = (e, aNRR𝑛 (𝑦)) and 𝑔(e′, aNLW𝑛 (𝑦)) = (e, aNLW𝑛 (𝑦)). We
proceed similarly for Put events.

• Finally for e′ = (𝑡, _, (Wait, (𝑑), ())), there is in 𝑓 −1 (e′) some last event (in po order) of
the form e = (𝑡, _, (SetIsEmpty, (𝑑𝑁), true)) confirming the set 𝑑𝑁 tracking operations
towards the last node 𝑁 is empty. We define 𝑔(e′, aWT) = (e, aMF).

We can see that 𝑔(⟨e′, 𝑎′⟩) = ⟨e, 𝑎⟩ implies that 𝑓 (e) = e
′ and that 𝑎 is more restrictive than 𝑎′.

Each subevent in G′ .R (resp. G′ .W) is mapped through 𝑔 to a subevent in G.R (resp. G.W)
using the same stamp and location. Thus it is straightforward to define v′R, v′W, rf′, mo

′, and nfo′ by
relying on their counterparts in G. E.g. v′R (s′) ≜ vR (𝑔(s′)) and rf

′ ≜
{
(s′1, s′2)

�� (𝑔(s′1), 𝑔(s′2)) ∈ rf

}
.

The well-formedness of vR, vW, rf, mo, and nfo trivially implies that of v′R, v′W, rf′, mo
′, and nfo

′.
From this, we have all the expected derived relations, including pfg′, pfp′, and ib′ ≜ (ippo′ ∪ iso

′ ∪
rf
′∪pfg

′∪pfp
′∪nfo

′∪rb
′
i
)+. We then define so′ ≜ iso

′∪rf
′
e
∪pfg

′∪nfo
′∪rb

′∪mo
′∪ ([Inst]; ib′),

and as previously mentioned hb
′ ≜ (ppo′ ∪ so

′)+.
To show {rdmawait}-consistency, we are left to prove that ib′ and hb′ are irreflexive. For this, it

is enough to show that 𝑔(ib′) ⊆ ib and 𝑔(hb′) ⊆ hb ≜ (ppo ∪ so)+ since we know both ib and hb

to be irreflexive.
For all subevent s′, 𝑔(s′) has a more restrictive stamp than s

′ (in most cases it is the same stamp,
but for Wait the stamp aMF is more restrictive than aWT); this implies that 𝑔(ppo′) ⊆ ppo. Then,
by definition, it is trivial to check that 𝑔(rf′) ⊆ rf, 𝑔(mo

′) ⊆ mo, 𝑔(nfo′) ⊆ nfo, 𝑔(ippo′) ⊆ ippo,
𝑔(rf′

e
) ⊆ rfe, 𝑔(iso′) ⊆ iso, 𝑔(rb′) ⊆ rb, and 𝑔(rb′

i
) ⊆ rbi.

To finish the proof, we need the following crucial pieces: 𝑔(pfp′) ⊆ ib, 𝑔(pfg′) ⊆ ib, and
𝑔(pfg′) ⊆ hb. In fact, it is enough to show that 𝑔(pfp′) and 𝑔(pfg′) are both included in pf; ppo+.
This is because pf; ppo+ ⊆ ib, [aNLW]; pf; ppo+ ⊆ hb, and the domain of 𝑔(pfg′) is included in
∪𝑛 G.aNLW𝑛 by definition.

Let ((e′1, aNRW𝑛), (e′2, aWT)) ∈ pfp
′. By definition they are of the form e

′
1 = (𝑡, _, (Put, (𝑥,𝑦, 𝑑), ()))

and e
′
2 = (𝑡, _, (Wait, (𝑑), ())), for some 𝑡 , 𝑥 , 𝑦, and 𝑑 , with (e′1, e′2) ∈ po

′ and 𝑛 = n(𝑥) the remote
node of this operation. By definition of the implementation and the abstraction, 𝑓 −1 (e′1) contains
two events e1 = (𝑡, _, (PutTSO, (𝑥,𝑦), (𝑣))) and e𝑎 = (𝑡, _, (SetAdd, (𝑑𝑛, 𝑣), ())), with e1

po

−−→ e𝑎 .
Meanwhile 𝑓 −1 (e′2) contains a last event e2 = (𝑡, _, (SetIsEmpty, (𝑑𝑁), true)) and an earlier event

e3 = (𝑡, _, (SetIsEmpty, (𝑑𝑛), true)), with e3
po

∗

−−→ e2, confirming operations towards 𝑛 are done (if
𝑛 = 𝑁 then e2 = e3).

Since 𝑓 (e𝑎) = e
′
1

po
′

−−→ e
′
2 = 𝑓 (e3) and 𝑓 is an abstraction, we have e𝑎

po

−−→ e3, i.e. the value 𝑣 is
added to 𝑑𝑛 before the moment 𝑑𝑛 is confirmed empty. By consistency (Definition G.1), there is an
in-between event e4 = (𝑡, _, (SetRemove, (𝑑𝑛, 𝑣), ())) that removes this value, with e𝑎

po

−−→ e4
po

−−→ e3.
From the definition of the implementation, such an event e4 is immediately preceded (with maybe
other SetRemove in-between) by an event e𝑝 = (𝑡, _, (Poll, (𝑛), (𝑣))). Now we argue that we
necessarily have ((e1, aNRW𝑛), (e𝑝 , aWT)) ∈ pf. From the well-formedness of pf, we know that

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 59

(e𝑝 , aWT) has a preimage (pf is total and functional on its range) and that this preimage outputs
the value 𝑣 . By consistency (Definition G.1), e1 is the only GetTSO or PutTSO with output 𝑣 . Thus
(e1, aNRW𝑛) is the preimage of (e𝑝 , aWT) by pf.

Finally we have 𝑔(e′1, aNRW𝑛) = (e1, aNRW𝑛)
pf

−→ (e𝑝 , aWT)
ppo

−−→ (e4, aMF)
ppo

−−→ (e3, aMF)
ppo

∗

−−−→
(e2, aMF) = 𝑔(e′2, aWT), which shows 𝑔(pfp′) ⊆ pf; ppo+.
We similarly have 𝑔(pfg′) ⊆ pf; ppo+ via the same reasoning. Thus ib′ and hb

′ are irreflexive,
and G′ is {rdmawait}-consistent. □

H.6 Mixed-size writes Library

H.6.1 The msw Library. A limitation of the rdmawait library is that each location corresponds
to a specific memory location, and thus can only contain a fixed amount of data. LOCO wants
to provide abstractions simulating shared memory with distributed objects. As such, we want to
hide away the atomicity constraints of the underlying RDMA technology and provide methods to
manipulate large objects without the risk of wrong manipulations and corrupted data. A first step
for this is the mixed-size write library (msw) that can manipulate data of any size with the same
semantics as rdmawait. The library uses similar methods, with a syntax defined as follows.

𝑚(𝑣̃) ::= WriteMSW (𝑥, ⟨𝑣1, . . . , 𝑣𝑘⟩) | TryReadMSW (𝑥)
| GetMSW (𝑥,𝑦, 𝑑) | PutMSW (𝑥,𝑦, 𝑑) | WaitMSW (𝑑)

There is two differences with the methods of the rdmawait library. Firstly, the read function
TryReadMSW : Loc → Val

∗⊎{⊥} can fail if the underlying data is not in a stable state (i.e. corrupted
or being modified). Secondly, the reads and writes WriteMSW : Loc×Val∗ → () methods manipulate
tuples of values, whereas rdmawait locations can only hold a single value. If necessary, a more
usual read method can be derived by simply looping calls to TryReadMSW until it succeeds.
The consistency predicate is then a copy of the one from rdmawait, except failing reads are

ignored. This semantics guarantees there is no out-of-thin-air: if a TryReadMSW operation succeeds,
then it reads a value that was explicitly written by some WriteMSW operation.

This library can then be used to implement an MSW-Broadcast library where each shared variable
contains a tuple of values, similarly to how sv is built on top of rdmawait.

Implementation. We assume given a function size : Loc → N associating locations to the
amount of data they hold. From this, we define the implementation 𝐼 sizeMSW of the msw library into
rdmawait. We assume some function hash, such that hash(𝑣̃) = hash(𝑣 ′) implies 𝑣̃ = 𝑣 ′. For each
location 𝑥 of the msw library, we create size(𝑥) + 1 locations

{
𝑥0, 𝑥1, . . . , 𝑥size(𝑥)

}
of the rdmawait

library. The location 𝑥0 holds the hash of the data, which is written to 𝑥1, . . . , 𝑥size(𝑥) .
For events that do not respect size or the nodes, the implementation is simply an infinite loop,

similarly to the previous implementations. Otherwise, as shown in Fig. 29, we apply the rdmawait
methods to each location, and a read succeeds if the hash corresponds to the accompanying data.

Theorem H.10. The implementation 𝐼 sizeMSW is locally sound.

Proof. See Theorem H.3. □

H.6.2 Correctness. This appendix completes Appendix H.6.1 on the definition of rdmawait. Our
model assumes a size function size : Loc → N associating each location to the amount of data it
stores. As mentioned, we have the 5 methods:
𝑚(𝑣̃) ::= WriteMSW (𝑥, (𝑣1, . . . , 𝑣𝑘)) | TryReadMSW (𝑥) | GetMSW (𝑥,𝑦, 𝑑) | PutMSW (𝑥,𝑦, 𝑑) | WaitMSW (𝑑)

60 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

𝐼 sizeMSW (𝑡, WriteMSW, (𝑥, ⟨𝑣1, . . . , 𝑣size(𝑥)⟩)) ≜
Write(𝑥0, hash((𝑣1, . . . , 𝑣size(𝑥))))
Write(𝑥1, 𝑣1);
. . . ;
Write(𝑥size(𝑥) , 𝑣size(𝑥));

𝐼 sizeMSW (𝑡, TryReadMSW, (𝑥)) ≜
let 𝑣0 = Read(𝑥0) in

let 𝑣1 = Read(𝑥1) in

. . .

let 𝑣size(𝑥) = Read(𝑥size(𝑥)) in

if 𝑣0 = hash(⟨𝑣1, . . . , 𝑣size(𝑥)⟩) then ⟨𝑣1, . . . , 𝑣size(𝑥)⟩ else ⊥

𝐼 sizeMSW (𝑡, PutMSW, (𝑥,𝑦, 𝑑)) ≜
Put(𝑥0, 𝑦0, 𝑑);
. . . ;
Put(𝑥size(𝑥) , 𝑦size(𝑥) , 𝑑));

𝐼 sizeMSW (𝑡, GetMSW, (𝑥,𝑦, 𝑑)) ≜
Get(𝑥0, 𝑦0, 𝑑);
. . . ;
Get(𝑥size(𝑥) , 𝑦size(𝑥) , 𝑑));

𝐼 sizeMSW (𝑡, WaitMSW, (𝑑)) ≜ Wait(𝑑)

Fig. 29. Implementation 𝐼sizeMSW of the msw library into rdma
wait

• WriteMSW : Loc × Val
∗ → ()

• TryReadMSW : Loc → Val
∗ ⊎ {⊥}

• GetMSW : Loc × Loc ×Wid → ()

• PutMSW : Loc × Loc ×Wid → ()
• WaitMSW : Wid → ()

While this syntax does not include a TSO memory fence (similarly to bal in 3.4), a program can
use both this library and the memory fence from rdmawait.
We also define loc as expected: loc(WriteMSW (𝑥, 𝑣)) = loc(TryReadMSW (𝑥)) = {𝑥};

loc(GetMSW (𝑥,𝑦, 𝑑)) = loc(PutMSW (𝑥,𝑦, 𝑑)) = {𝑥 ;𝑦}; and loc(e) = ∅ otherwise.

Consistency predicate. Given an execution G = ⟨𝐸, po, stmp, so, hb⟩, we define consistency simi-
larly to rdmawait. The main difference is that the TryReadMSW function reading a location can fail
without justification.

We define the only valid stamping function stmpMSW as follows:
• A succeeding TryReadMSW has stamp aCR: stmpMSW ((_, _, (TryReadMSW, _, 𝑣̃))) = {aCR}.
• A failing TryReadMSW has stamp aWT: stmpMSW ((_, _, (TryReadMSW, _,⊥))) = {aWT}.
• Other events follow stmpRL (cf. §G.2): events calling WriteMSW, PutMSW, GetMSW, and
WaitMSW have respectively stamps aCW, aNRR𝑛 and aNLW𝑛 , aNLR𝑛 and aNRW𝑛 , and aWT.

We mark failed read events with the stamp aWT to simplify the definition. This stamp has the same
to relation as aCR (cf. 10), and is thus equivalent, but we do not need to change our definition of
G.R covering all events stamped aCR.

Definition H.11 (msw-consistency). G = ⟨𝐸, po, stmp, so, hb⟩ is msw-consistent if:
• ⟨𝐸, po⟩ is well-formed (as in rdmawait);
• 𝐸 respects the function size. I.e., for all event with label (WriteMSW, (𝑥, (𝑣1, . . . , 𝑣𝑘)), ())
or (TryReadMSW, (𝑥), (𝑣1, . . . , 𝑣𝑘)) we have 𝑘 = size(𝑥), and for all event with label
(GetMSW, (𝑥,𝑦, 𝑑), ()) or (PutMSW, (𝑥,𝑦, 𝑑), ()) we have size(𝑥) = size(𝑦).

• stmp = stmpMSW;
• there exists well-formed vR, vW, rf, mo, and nfo (defined as in rdmawait) such that ib is
irreflexive and so = iso ∪ rfe ∪ pfg ∪ nfo ∪ rb ∪mo ∪ ([Inst]; ib).

Note. The components vR, rf, and rb do not cover failed read events. This weak semantics does
not guarantee any read will eventually succeed, as they are allowed to fail for any reason. It means
synchronisation (e.g. barrier) do not force written data to be available.
This semantics only guarantees that there is no out-of-thin-air; i.e. if a read succeeds then it

returns a value that was explicitly written.

A Verified High-Performance Composable Object Library for Remote Direct Memory Access 61

A more complex semantics ensuring that properly written data is not corrupted would be
interesting. It would require a proper notion of data races, and lead to a semantics much more
complex than that of rdmawait.

Implementation. The implementation 𝐼 sizeMSW of the msw library into rdmawait is discussed in
Appendix H.6.1.

I Correctness Proof of kvstore

The kvstore object described in §6.2 is linearisable [Herlihy and Wing 1990b], and we here provide
an proof of safety. Note that our proof leverages both the composition of linearisability and the
mutual exclusion property of our locks, their use are simplified by the composable nature of LOCO
channels.

Updates to the indices are protected by an array of ticket_lock. When a node tries to insert or
delete a key, it first acquires the lock with index key%NUM_LOCKS. It then looks the key up in its
local index. In the case of an insertion, if the key does not yet exist, the node first writes the value
to a free slot in its local data array with the valid bit unset, increments the counter corresponding
to that slot, updates the checksum, and then broadcasts the value’s location and counter to other
nodes on a ringbuffer called the tracker. Each node monitors the set of other nodes’ trackers with
a dedicated thread, which applies requested updates to the local index and then acknowledges the
message. The inserter waits until all nodes have acknowledged its message, meaning the location
of the key is present in all indices, and then marks the entry valid and releases the lock. Deletion is
the reverse under the lock; marking the entry invalid, then broadcasting the deletion, and removing
the entry once all nodes have acknowledged it.

To update the value mapped to a key, a node takes the lock corresponding to that key and looks
up its location in the local index. If it exists, it writes the new value to that location (retaining the
counter and valid bit), updates the checksum, then releases the lock. This write is fenced, to ensure
it is ordered with the subsequent lock release.

To retrieve the value mapped to a key, a node need not take a lock, but simply looks up the key in
the local index, failing if it is not found, and reads the value and accompanying metadata from their
location on the corresponding node. If the checksum is incorrect due to a torn update, it retries. If
the valid bit is not set (indicating an incomplete insertion/deletion), or the counter mismatches
(indicating a stale local index), the reader can safely return EMPTY.

I.1 Preliminaries

We choose linearisation points [Herlihy and Wing 1990b] for each modification operation as
follows. A write linearises when the key, value, and checksum are fully placed on the host node. A
delete linearises when the valid bit is unset (before all nodes have modified their local index and
acknowledged the deletion). An insert linearises when the valid bit is set (after all nodes have
modified their local index and acknowledged the insertion).

The linearisation points of reads are determined retrospectively depending on the read value.
Investigation of the algorithm determines every read consists of two steps (possibly repeated).

(1) A fetch from the local index to determine the node and address of the key’s associated value. (2)
A remote read to this location. The remote read can result in one of three possible scenarios.

(1) If the read contents match the associated counter and checksum and the valid bit is set, the
read linearises at the point of the remote read’s execution and returns the read value.

(2) If the read contents and the associated checksum do not match, the read overlaps with an
ongoing (torn) update, and the read is retried in its entirety.

62 G. Ambal, G. Hodgkins, M. Madler, G. Chockler, B. Dongol, J. Izraelevitz, A. Raad, and V. Vafeiadis

(3) If the read contents match the requested counter but the valid bit is unset, this implies either
that an in-progress insert has not yet linearised, or an in-progress deletion has already
linearised but not yet updated the local index. The read linearises at the point of the remote
read’s execution and returns EMPTY.

(4) If the read contents do not match the requested counter, this implies an in-progress delete
has completed but had not yet updated the local index when the read was initiated, and
later operations have reused the slot. In this case, the read linearises immediately after the
delete and returns EMPTY.

I.2 Proof of Safety

Lemma I.1. All write s, delete s, and insert s for a given key form a total modification order
which respects the real-time ordering of the operations.

Proof. By mutual exclusion on the per-key lock, each operation’s effects are completed before
any subsequent operation. □

Lemma I.2. Every read returns a value consistent with the total modification order and which
respects real-time ordering of the operations.

Proof. We break our proof into three cases contingent on the result of the remote read. In the
first, the local index counter matches the result of the remote read, in the second, the local index
does not match, in the third, the checksum does not match and the read cannot determine the case.
We validate the linearisation of the read for each case in reverse order.

In the case where the checksum does not match, this is an atomicity violation, and the operation
retries without linearising.
In the case where the local index does not match, the counter value read by the remote read

indicates that the local index is out of date. This case implies an in-progress delete has linearised
but not yet updated the local index, and later operations have reused the slot. As the remote delete
cannot complete until the local index is updated, the read must have overlapped in real-time with
the delete, and thus can return EMPTY.
In the case where the local index matches, the remote read may discover a either a valid or

invalid value. If the value is valid, the read can return the read value, as this value respects the most
recent linearisation of a modification to the location. If the read discovers an invalid flag — this
indicates that its local index is out-of-date with respect to an ongoing delete or insert. Returning
EMPTY respects the linearisation point of both operations (note the asymmetry of the modifying
operations to enable this possibility). □

By lemma I.1 and I.2, and by composition of linearisable objects [Herlihy and Wing 1990b],

Theorem I.3. The presented hashmap is linearisable.

	Abstract
	1 Introduction
	2 Overview of LOCO and MOWGLI
	2.1 The rdmawait Memory Model
	2.2 LOCO Libraries
	2.3 Towards a Modular Verification Framework for LOCO

	3 The Mowgli Framework and the Shared Variable Library
	3.1 Syntax and Semantics
	3.2 Libraries
	3.3 The rdmawait Library
	3.4 Example: Consistency for Shared Variables
	3.5 Library Implementations
	3.6 Abstractions and Locality

	4 Barrier Library
	4.1 Generic Barrier Specification
	4.2 LOCO Implementation
	4.3 Supporting Transitivity

	5 Ring Buffer Library
	5.1 Ring Buffer Specification
	5.2 LOCO Implementation

	6 Evaluation
	6.1 LOCO Primitives
	6.2 Example Application: A Key-Value Store

	7 Related and Future Work
	8 Conclusion
	Acknowledgments
	References
	A Further Details of LOCO's Design
	A.1 Channel Overview
	A.2 Channel Setup

	B Further LOCO-based Applications
	B.1 Transactional Locking
	B.2 Distributed DC/DC Converter System

	C LOCO Backend
	C.1 RDMA Operations and Completions
	C.2 Fences and Memory Ordering
	C.3 Local Scalability
	C.4 Network Memory Management

	D LOCO Bugs Discovered (and Corrected)
	E Clients using Multiple Libraries
	F Correctness Proof of the Mowgli Framework
	F.1 Wide Abstraction
	F.2 Finding a Wide Abstraction
	F.3 Locally Sound Implies Sound

	G rdmawait implementation into rdmatso
	G.1 Background: rdmatso
	G.2 rdmawait Library
	G.3 Implementation Function
	G.4 Proof

	H Correctness Proofs of the Core LOCO Libraries
	H.1 sv Library
	H.2 msw Library
	H.3 bal Library
	H.4 rbl Library
	H.5 rdmawait to rdmatso
	H.6 Mixed-size writes Library

	I Correctness Proof of kvstore
	I.1 Preliminaries
	I.2 Proof of Safety

