Certified Derivation of Small-Step From Big-Step
Skeletal Semantics

Guillaume Ambal, Serguei Lenglet, Alan Schmitt, Camille Nofis

September 22, 2022

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 1/27

Context

Different Operational Semantics

> Natural Semantics (Big-Step):

s,er vy s,e v vi+w=v

s,Plus(ey, &) | v

> Structural Operational Semantics (Small-Step):

s,e1 — s, e

s,Plus (e, &) — s,Plus (e}, &)

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 3/27

> Context Based Reduction Semantics:
C =[] | Plus(C,e) | Plus(v, C)

vi+tw=v

s,Plus(vi, v2) — v

> Abstract Machine:

< Plus(e;,&);s;m >, — <ey;s; (Plus([],e),s) =7 >p

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 4/27

Related Work
Interderiving Operational Semantics:
Vesely Fisher '19

Big-Step | Small-Step
) \

Ciobaca '13

functionnal Ager '04
corresp- Danvy '08

ondance Almbal '22

) refocusing (
[Abstract Machine
) '04 '10 '17 L

Reduction Sema ntics]

Mostly ad-hoc uncertified transformations

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 5/27

This Work

Certified generic automatic transformation from big-step to small-step
skeletal semantics

Framework: Skeletal Semantics
With Necro: OCaml implementation of Skeletal Semantics

T

Debugger

Interpreter

Coq

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 6/27

Example: IMP

type stmt =

| Skip

| Assign of ident * expr

| Seq of stmt * stmt

| If of expr * stmt * stmt
| While of expr * stmt

hook hstmt (s : state, t : stmt) matching t
| Seq (t1, t2) ->

let s' = hstmt (s, tl1) in

hstmt (s', t2)

state =

Guillaume Ambal From Big-Step to Small-Step

September 22, 2022 7/27

Transformation

Big-Step vs Small-Step

Big-Step: fully evaluates the term

s,t1 s st s”
s,Seq(t1, t2) |} s”

Small-Step: stops and reconstructs a term

s,tp — st

s,Seq(t1, t) — ', Seq(t], to) s,Seq(Ret (s), 1) — s, t

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 9/27

Intuition: Seq

Big-Step:
s,t1 | s st s”

s,8eq(ty, t2) |} s”

Guillaume Ambal From Big-Step to Small-Step

Intuition: Seq

Big-Step:
s,t1 | s st s”

s,8eq(ty, t2) |} s”

Small-Step:

s,Seq(t1, t2) — ...

Guillaume Ambal From Big-Step to Small-Step

Intuition: Seq

Big-Step:
s,t1 | s st s”

s,8eq(ty, t2) |} s”

Small-Step:

s,t1 — st

s,Seq(t1, t2) — ...

Guillaume Ambal From Big-Step to Small-Step

Intuition: Seq

Big-Step:
s,t1 | s st s

s,8eq(ty, t2) |} s”

Small-Step:

S, t1 — 5/7 ti
s,Seq(ty, ty) — s',Seq(t], tn)

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 10/27

Intuition: While

Big-Step:

s,er s, v isTrue(v) s t|s” s” While(eq, tp) | "
s,While(eq, tp) | 5"

Guillaume Ambal From Big-Step to Small-Step

Intuition: While

Big-Step:
s,er s, v isTrue(v) s t|s” s” While(ey, tr) | s
s,While(eq, tp) | 5"
Small-Step:

s,While(el, tr) — ...

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 11/27

Intuition: While

Big-Step:
s,er s, v isTrue(v) s t|s” s” While(ey, tr) | s
s,While(eq, tp) | 5"
Small-Step:

s,e1 — s ef

s,While(el, tr) — ...

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 11/27

Intuition: While

Big-Step:
s,er s’ v isTrue(v) s t|s” s” While(ei, tr) | s
s,While(eq, tp) | 5"
Small-Step:

s,e1 — s ef

s,While(er, t) — s Uniteter fp)

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 11/27

Intuition: While

Big-Step:
s,er s’ v isTrue(v) s t|s” s” While(ei, tr) | s
s,While(eq, tp) | 5"
Small-Step:

s,e1 — s ef

s,While(er, t) — s Uniteter fp)

= Need new constructor to remember both e; and €]

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 11/27

Transformation Phases

Three main phases of the transformation:
@ Find the problematic premises
@ Create new constructors for them

@ Turn everything small-step

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 12/27

1. Problematic cases

Could simply flag everything as problematic!
It works, but ugly results...

Smarter way: analyze skeletons
Main reasons to flag a premise as problematic:

@ Not enough memory space
@ After a choice we do not want to cancel

These bad cases are found by a simple local analysis

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 13 /27

2. New Constructors

One for each problematic premise
Big-Step:

s,ells’ v isTrue(v) s t|s” s” While(eq, tp) | "
s,While(eq, tp) | 5"

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 14 /27

2. New Constructors

One for each problematic premise

Big-Step:
s,ells’ v isTrue(v) st |l s” s” While(eq, tp) | "
s,While(eq, tp) | 5"
End goal:
s,While(ey, tp) — s,Whilel(...)
Y isTrue(v) st | s” s” While(er, to) || s”

s,While1(...) | s

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 14 /27

2. New Constructors

One for each problematic premise

Big-Step:
s,ells’ v isTrue(v) st |l s” s” While(eq, tp) | "
s,While(eq, tp) | 5"
End goal:
s,While(ey, tp) — s,Whilel(s. e, ...)
so.eq s, v isTrue(v) st | s” s” While(er, to) |} 5"

s,Whilel(sy. ep,...) | s

Guillaume Ambal From Big-Step to Small-Step September 22, 2022

14 /27

2. New Constructors

One for each problematic premise

Big-Step:
s,ells’ v isTrue(v) s t|s” s” While(eq, tp) | "
s,While(ey, tp) |} s
End goal:
s,While(ej, t) — s,Whilel (s, e, e, tp)
so,e0db s’ v isTrue(v) sl s s” While(er, tr) || s”

!

s,Whilel(sp, ep, e1,) | s

Guillaume Ambal From Big-Step to Small-Step September 22, 2022

14 /27

3. Small-Stepify
> Problematic evaluation calls are replaced by the new constructor

For instance for while:

s,While(ey, tp) — s,Whilel(s, e, e,)
With skeletons:

hook hstmt (s : state, t

: : stmt) matching t : state * stmt =
|

| While (el, t2) —>
(s, Whilel (s, el, el, t2))

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 15 /27

> Good evaluation calls are replaced by a branching

For instance for sequences:

s,tp — st

s,Seq(t1, tr) — s',Seq(t], tr) s,Seq(Ret(s),) — s, t

With skeletons:

hook hstmt (s : state, t : stmt) matching t : state * stmt =
| Seq (t1, t2) —>
branch
let (s', t1') = hstmt (s, tl1) in
(s', Seq (t1', t2))

or
let Ret s' = t1 in
(s', t2)

end

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 16 /27

Transformation: Conclusion

@ Automatic translation of a Big-Step skeletal semantics into an
equivalent Small-Step semantics

@ Works on any language expressible with inference rules
@ Reuses constructors as much as possible

@ Implemented in Necro

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 17 /27

Certification

Certification

Theorem we want (for every evaluation function)
tlv <= t=>%v J

|} : given Big-Step semantics
—* 1 transitive closure of the resulting Small-Step semantics

Guillaume Ambal From Big-Step to Small-Step

September 22, 2022 19/27

Pen-and-paper Proof

Full transformation seems too complex
Instead, we prove a simplified version without analysis
(i.e., assume every premise is a problematic case)

Pages of lemmas about:
@ Freshness conditions for variables

@ Showing new constructors work as intended when going small-step

The paper proof also covers diverging behaviors:

(> = t—==

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 20/27

Coq Certification

Second certification method: Coq proof script

Fully automatic

o Language specific

@ Handles constructor reuse
]

Makes use of Necro-Coq

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 21/27

Coq: BS = SS

Big-Step:

. : vi+w=v
e1 v el v

Plus(ep,e) | v

Guillaume Ambal From Big-Step to Small-Step

Coqg: BS = SS

Big-Step:

Vi+w=v
er b vi el v

Plus(ep,e) | v

Small-Step:

Plus(e;, e) ~Plus(e),e) -
Plus(vi, &) —Plus(vy, eb) — -+ —
Plus(vi, o) — v

Easy to automate in Coq

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 22/27

Coqg: SS = BS

Same strategy backwards is hard...
(e.g., splitting Plus (e1, &2) —* v)

Instead, we use a simple concatenation lemma:

t—>tv = tlv

Then, iterating the lemma gives us:
t—="v — tlv

e Easy for Coq to bruteforce (no sequences or transitive closure)

@ Only works if the big-step semantics is defined on the same
constructors, for cases like: s,While(ej, tr) — s,Whilel(...) | v

Guillaume Ambal From Big-Step to Small-Step

September 22, 2022 23 /27

Three Semantics

Initial (BS)

type stmt =
[...
| While of expr * stmt

hook hstmt : state
| Seq (t1, t2) ->
let s' = hstmt (s, tl1) in
hstmt (s', t2)

=

=N Intermediate

=

type stmt =
| ...
| Whilel of

| While2 of ...
| Ret of state

hook hstmt ...

| Seq (t1, t2) ->
let s' = hstmt (s, tl1) in
hstmt (s', t2)

state

While2 (s0, tO, el, t2) ->
let s' = hstmt (s0,t0) in
hstmt (s', While (el,t2))
| Ret (s') -> s

= Output (SS)
type stmt =

[...
| Whilel of

| While2 of ...
| Ret of state

hook ... : state * stmt
| Seq (t1, t2) ->
branch
let (s', t1")
= hstmt (s, tl1) in
(s', Seq (t1', t2))
or

Guillaume Ambal From Big-Step to Small-Step

let Ret s' = tl1 in
(s', t2)
end

September 22, 2022 24 /27

Evaluation

Constructors
Language Big-Step ‘ Small-Step ‘ No Reuse
Call-by-Name 3 4 5
Call-by-Value 3 4 5
CBV, choice 4 5 6
CBV, fail 5 6 7
Arithmetic 5 5 13
IMP 11 13 21
IMP, write in exp 12 14 23
IMP, Letln 12 16 24
IMP, try/catch 15 17 26
MiniML 18 28 33

Table: Size of the Generated Semantics

Guillaume Ambal From Big-Step to Small-Step

September 22, 2022

25 /27

Conclusion

Conclusion

Fully automated generic transformation, implemented in Necro

Generic proof for a simplified version without constructor reuse

For any language, generation of an equivalence proof script
tyv <= t->"v

Tested on several languages (including mini-ML)

Does not work (yet?) with recent Skel

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 27 /27

