
Certified Derivation of Small-Step From Big-Step
Skeletal Semantics

Guillaume Ambal, Serguëı Lenglet, Alan Schmitt, Camille Noûs

September 22, 2022

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 1 / 27

Context

Different Operational Semantics

▷ Natural Semantics (Big-Step):

s, e1 ⇓ v1 s, e2 ⇓ v2 v1 + v2 = v

s, Plus(e1, e2) ⇓ v

▷ Structural Operational Semantics (Small-Step):

s, e1 → s, e ′1

s, Plus(e1, e2) → s, Plus(e ′1, e2)
· · ·

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 3 / 27

▷ Context Based Reduction Semantics:

C ::= [·] | Plus(C , e) | Plus(v ,C)

v1 + v2 = v

s, Plus(v1, v2) → v

▷ Abstract Machine:

< Plus(e1, e2); s;π >m → < e1; s; (Plus([·], e2), s) :: π >m

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 4 / 27

Related Work

Interderiving Operational Semantics:

Big-Step Small-Step

Reduction SemanticsAbstract Machine

Vesely Fisher ’19

Ciobâcă ’13

Danvy ’08

refocusing

’04 ’10 ’17

functionnal
corresp-
ondance Ambal ’22

Ager ’04

Mostly ad-hoc uncertified transformations

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 5 / 27

This Work

Certified generic automatic transformation from big-step to small-step
skeletal semantics

Framework: Skeletal Semantics
With Necro: OCaml implementation of Skeletal Semantics

λ-calculus

JavaScript

BrainFuck

Skel

...

Debugger

Interpreter

Coq

N
E
C
R
O

Transformation

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 6 / 27

Example: IMP

type stmt =

| Skip

| Assign of ident * expr

| Seq of stmt * stmt

| If of expr * stmt * stmt

| While of expr * stmt

...

hook hstmt (s : state, t : stmt) matching t : state =

| Seq (t1, t2) ->

let s' = hstmt (s, t1) in

hstmt (s', t2)

| ...

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 7 / 27

Transformation

Big-Step vs Small-Step

Big-Step: fully evaluates the term

s, t1 ⇓ s ′ s ′, t2 ⇓ s ′′

s, Seq(t1, t2) ⇓ s ′′

Small-Step: stops and reconstructs a term

s, t1 → s ′, t ′1

s, Seq(t1, t2) → s ′, Seq(t ′1, t2) s, Seq(Ret(s ′), t2) → s ′, t2

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 9 / 27

Intuition: Seq

Big-Step:
s, t1 ⇓ s ′ s ′, t2 ⇓ s ′′

s, Seq(t1, t2) ⇓ s ′′

Small-Step:

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 10 / 27

Intuition: Seq

Big-Step:
s, t1 ⇓ s ′ s ′, t2 ⇓ s ′′

s, Seq(t1, t2) ⇓ s ′′

Small-Step:

...

s, Seq(t1, t2) → ...

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 10 / 27

Intuition: Seq

Big-Step:
s, t1 ⇓ s ′ s ′, t2 ⇓ s ′′

s, Seq(t1, t2) ⇓ s ′′

Small-Step:

s, t1 → s ′, t ′1

s, Seq(t1, t2) → ...

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 10 / 27

Intuition: Seq

Big-Step:
s, t1 ⇓ s ′ s ′, t2 ⇓ s ′′

s, Seq(t1, t2) ⇓ s ′′

Small-Step:

s, t1 → s ′, t ′1

s, Seq(t1, t2) → s ′, Seq(t ′1, t2)

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 10 / 27

Intuition: While

Big-Step:

s, e1 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While(e1, t2) ⇓ s ′′′

Small-Step:

⇒ Need new constructor to remember both e1 and e ′1

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 11 / 27

Intuition: While

Big-Step:

s, e1 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While(e1, t2) ⇓ s ′′′

Small-Step:

...

s, While(e1, t2) → ...

⇒ Need new constructor to remember both e1 and e ′1

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 11 / 27

Intuition: While

Big-Step:

s, e1 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While(e1, t2) ⇓ s ′′′

Small-Step:

s, e1 → s ′, e ′1

s, While(e1, t2) → ...

⇒ Need new constructor to remember both e1 and e ′1

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 11 / 27

Intuition: While

Big-Step:

s, e1 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While(e1, t2) ⇓ s ′′′

Small-Step:

s, e1 → s ′, e ′1

s, While(e1, t2) →((((((((hhhhhhhhs ′, While(e ′1, t2)

⇒ Need new constructor to remember both e1 and e ′1

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 11 / 27

Intuition: While

Big-Step:

s, e1 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While(e1, t2) ⇓ s ′′′

Small-Step:

s, e1 → s ′, e ′1

s, While(e1, t2) →((((((((hhhhhhhhs ′, While(e ′1, t2)

⇒ Need new constructor to remember both e1 and e ′1

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 11 / 27

Transformation Phases

Three main phases of the transformation:

Find the problematic premises

Create new constructors for them

Turn everything small-step

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 12 / 27

1. Problematic cases

Could simply flag everything as problematic!
It works, but ugly results...

Smarter way: analyze skeletons
Main reasons to flag a premise as problematic:

Not enough memory space

After a choice we do not want to cancel

These bad cases are found by a simple local analysis

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 13 / 27

2. New Constructors

One for each problematic premise
Big-Step:

s, e1 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While(e1, t2) ⇓ s ′′′

End goal:

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 14 / 27

2. New Constructors

One for each problematic premise
Big-Step:

s, e1 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While(e1, t2) ⇓ s ′′′

End goal:

s, While(e1, t2) → s, While1(...)

... ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While1(...) ⇓ s ′′′

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 14 / 27

2. New Constructors

One for each problematic premise
Big-Step:

s, e1 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While(e1, t2) ⇓ s ′′′

End goal:

s, While(e1, t2) → s, While1(s, e1, ...)

s0, e0 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While1(s0, e0, ...) ⇓ s ′′′

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 14 / 27

2. New Constructors

One for each problematic premise
Big-Step:

s, e1 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While(e1, t2) ⇓ s ′′′

End goal:

s, While(e1, t2) → s, While1(s, e1, e1, t2)

s0, e0 ⇓ s ′, v isTrue(v) s ′, t2 ⇓ s ′′ s ′′, While(e1, t2) ⇓ s ′′′

s, While1(s0, e0, e1, t2) ⇓ s ′′′

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 14 / 27

3. Small-Stepify

▷ Problematic evaluation calls are replaced by the new constructor

For instance for while:

s, While(e1, t2) → s, While1(s, e1, e1, t2)

With skeletons:

hook hstmt (s : state, t : stmt) matching t : state * stmt =

| ...

| While (e1, t2) ->

(s, While1 (s, e1, e1, t2))

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 15 / 27

▷ Good evaluation calls are replaced by a branching

For instance for sequences:

s, t1 → s ′, t ′1

s, Seq(t1, t2) → s ′, Seq(t ′1, t2) s, Seq(Ret(s ′), t2) → s ′, t2

With skeletons:

hook hstmt (s : state, t : stmt) matching t : state * stmt =

| Seq (t1, t2) ->

branch

let (s', t1') = hstmt (s, t1) in

(s', Seq (t1', t2))

or

let Ret s' = t1 in

(s', t2)

end

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 16 / 27

Transformation: Conclusion

Automatic translation of a Big-Step skeletal semantics into an
equivalent Small-Step semantics

Works on any language expressible with inference rules

Reuses constructors as much as possible

Implemented in Necro

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 17 / 27

Certification

Certification

Theorem we want (for every evaluation function)

t ⇓ v ⇐⇒ t →∗ v

⇓ : given Big-Step semantics
→∗ : transitive closure of the resulting Small-Step semantics

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 19 / 27

Pen-and-paper Proof

Full transformation seems too complex
Instead, we prove a simplified version without analysis
(i.e., assume every premise is a problematic case)

Pages of lemmas about:

Freshness conditions for variables

Showing new constructors work as intended when going small-step

The paper proof also covers diverging behaviors:

t ⇑∞ ⇐⇒ t →∞

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 20 / 27

Coq Certification

Second certification method: Coq proof script

Fully automatic

Language specific

Handles constructor reuse

Makes use of Necro-Coq

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 21 / 27

Coq: BS ⇒ SS

Big-Step:
...

e1 ⇓ v1

...

e2 ⇓ v2
v1 + v2 = v

Plus(e1, e2) ⇓ v

Small-Step:

Plus(e1, e2)→Plus(e ′1, e2)→· · ·→
Plus(v1, e2)→Plus(v1, e

′
2)→· · ·→

Plus(v1, v2) → v

Easy to automate in Coq

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 22 / 27

Coq: BS ⇒ SS

Big-Step:
...

e1 ⇓ v1

...

e2 ⇓ v2
v1 + v2 = v

Plus(e1, e2) ⇓ v
Small-Step:

Plus(e1, e2)→Plus(e ′1, e2)→· · ·→
Plus(v1, e2)→Plus(v1, e

′
2)→· · ·→

Plus(v1, v2) → v

Easy to automate in Coq

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 22 / 27

Coq: SS ⇒ BS

Same strategy backwards is hard...
(e.g., splitting Plus(e1, e2) →∗ v)

Instead, we use a simple concatenation lemma:

t → t ′ ⇓ v =⇒ t ⇓ v

Then, iterating the lemma gives us:

t →∗ v =⇒ t ⇓ v

Easy for Coq to bruteforce (no sequences or transitive closure)

Only works if the big-step semantics is defined on the same
constructors, for cases like: s, While(e1, t2) → s, While1(...) ⇓ v

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 23 / 27

Three Semantics

⇐⇒ ⇐⇒Initial (BS)

type stmt =

| ...

| While of expr * stmt

hook hstmt ... : state =

| Seq (t1, t2) ->

let s' = hstmt (s, t1) in

hstmt (s', t2)

Intermediate

type stmt =

| ...

| While1 of ...

| While2 of ...

| Ret of state

hook hstmt ... : state =

| Seq (t1, t2) ->

let s' = hstmt (s, t1) in

hstmt (s', t2)

| ...

| While2 (s0, t0, e1, t2) ->

let s' = hstmt (s0,t0) in

hstmt (s', While (e1,t2))

| Ret (s') -> s'

Output (SS)

type stmt =

| ...

| While1 of ...

| While2 of ...

| Ret of state

hook ... : state * stmt =

| Seq (t1, t2) ->

branch

let (s', t1')

= hstmt (s, t1) in

(s', Seq (t1', t2))

or

let Ret s' = t1 in

(s', t2)

end

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 24 / 27

Evaluation

Constructors
Language Big-Step Small-Step No Reuse

Call-by-Name 3 4 5

Call-by-Value 3 4 5

CBV, choice 4 5 6

CBV, fail 5 6 7

Arithmetic 5 5 13

IMP 11 13 21

IMP, write in exp 12 14 23

IMP, LetIn 12 16 24

IMP, try/catch 15 17 26

MiniML 18 28 33

Table: Size of the Generated Semantics

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 25 / 27

Conclusion

Conclusion

Fully automated generic transformation, implemented in Necro

Generic proof for a simplified version without constructor reuse

For any language, generation of an equivalence proof script

t ⇓ v ⇐⇒ t →∗ v

Tested on several languages (including mini-ML)

Does not work (yet?) with recent Skel

Guillaume Ambal From Big-Step to Small-Step September 22, 2022 27 / 27

