
Specifying and Verifying RDMA Synchronisation

Abstract. Remote direct memory access (RDMA) allows a machine
to directly read from and write to the memory of remote machine, en-
abling high-throughput, low-latency data transfer. Ensuring correctness
of RDMA programs has only recently become possible with the formal-
isation of rdmatso semantics (describing the behaviour of RDMA net-
working over a TSO CPU). However, this semantics currently lacks a
formalisation of remote synchronisation, meaning that the implementa-
tions of common abstractions such as locks cannot be verified. In this
paper, we close this gap by presenting rdmatso

rmw, the first semantics for
remote ‘read-modify-write’ (RMW) instructions over TSO. It turns out
that remote RMW operations are weak and only ensure atomicity against
other remote RMWs. We therefore build a set of composable synchroni-
sation abstractions starting with the rdmawait

rmw library. Underpinned by
rdmawait

rmw , we then specify, implement and verify three classes of remote
locks that are suitable for different scenarios. Additionally, we develop
the notion of a strong RDMA model, rdmasc

rmw, which is akin to sequen-
tial consistency in shared memory architectures. Our libraries are built
to be compatible with an existing set of high-performance libraries called
loco, which ensures compositionality and verifiability.

1 Introduction

Remote Direct Memory Access (RDMA), as implemented by RoCE and Infini-
band, is a high-performance networking technology that enables low-latency
wire-speed data transmission. Specifically, an RDMA device can directly read
and write from the memory of a remote (network) node (machine), bypassing the
remote CPU and operating system. RDMA technology has been used in high-
performance computing applications (including supercomputers) since the early
2000s, and is being branched out to support a much wider range of applications,
ranging from production-grade data centres [25, 32, 34] to distributed AI train-
ing [17]. Thus, there is currently a push towards developing programmer-friendly
libraries to improve the reliability and robustness of such applications.

To enable rigorous development and verification, there is ongoing work aimed
at formalising the semantics of RDMA architectures, primarily the RDMA mem-
ory model. Dan et al [13] proposed an early model, called coreRMA, which was
used to formalise the behaviours of remote read/write operations, assuming a
sequentially consistent CPU. Ambal et al [3] have presented a more realistic
rdmatso specification, which assumes a total-store-order (TSO) CPU (e.g. as im-
plemented by Intel processors) that (unlike coreRMA) has been validated against
real RoCE and Infiniband hardware. rdmatso precisely describes the interac-
tion between the CPU and NIC (Network Interface Card) and the reorderings
that they allow. Their formalisation comprises both declarative and operational
models (which are proved equivalent). However, rdmatso only covers a subset

of RDMA instructions. In particular it only covers local (i.e. CPU-level) ‘read-
modify-write’ (RMW) synchronisation, relegating remote (i.e. RDMA) RMWs
to future work. This means that rdmatso cannot be used to specify and verify
locks and other related high-level mechanisms that require synchronisation at
the network level.

In this work, we address this gap and extend the existing efforts with a notion
of remote (RDMA) synchronisation. Specifically, we develop the rdmatso

rmw model
by extending rdmatso to account for remote RMWs. To ensure the fidelity of
our extension, we developed rdmatso

rmw by careful inspection of the Infiniband
technical manual [21] and in close consultation with engineers at NVIDIA, the
largest manufacturer of RDMA products worldwide (after acquiring Mellanox in
2019). We then build a series of synchronisation libraries and prove them correct
(as we discuss below). An overview of our development is given in Fig. 1.

Remote RMW instructions are surprisingly weak in that they only guarantee
a weak form of isolation: remote RMWs are atomic only with respect to other re-
mote RMWs and not CPU accesses or remote read and write accesses operations
(cf. weak transactional isolation [8,10,16,28,29]). We provide a set of litmus tests
that exemplify these behaviours in two- and three-node configurations. A second
challenge is that (like rdmatso) rdmatso

rmw is not compositional: the semantics
of a certain remote operation, Poll, directly depends on the exact number of
remote operations in the program up to that point! As such, one cannot specify
the behaviour of Poll modularly (in isolation).

rdmatso [3]

rdmawait

rdmatso
rmw §C

rdmawait
rmw (§3)

sv

wlock (§4.2)nlock (§4.4)

slock (§4.3)rdmasc
rmw (§5)

extends

extends

§B.2§B.2§B.4

§B.3§B.5

LOCO [4]

§C

Fig. 1: Development overview

To address both issues, we build on
the Library of Composable Objects (loco)
framework [4, 20], which is a modular
set of objects for constructing RDMA li-
braries. We start at the lowest level of
loco, called rdmawait, which is a com-
positional analogue of rdmatso (i.e. also
does not support remote RMWs). As
shown in Fig. 1, the rdmawait library it-
self is implemented using rdmatso.

Importantly, rdmawait abstracts rdmatso

by replacing its non-modular operation (Poll) with a modular analogue (Wait,
see §2.1). As such, unlike rdmatso, rdmawait is modular and can be composed
with other loco libraries (thanks to its Wait operation). Accordingly, we de-
velop rdmawait

rmw by extending rdmawait with RMW operations. Specifically, in
rdmawait

rmw we specify two remote RMWs: RCAS (remote compare-and-swap) and
RFAA (remote fetch-and-add). In doing so, we also ensure that our extensions are
compatible with rdmawait and the modular design of loco, thus guaranteeing
that rdmawait

rmw is also modular and can be composed with other loco libraries.

We next use rdmawait
rmw to develop several RDMA libraries (Fig. 1). First, we

combine rdmawait
rmw with the shared variable (sv) library (that provides a mech-

anism for broadcasting to many nodes) of loco to develop three lock libraries
with varying synchronisation guarantees (§4), each offering a different trade-

2

off between intuitive behaviours and efficiency. Second, we develop an RDMA
library with strong sequential consistency (SC) [23] semantics (§5).

Our first lock library is a weak lock, wlock, that provides mutual exclusion
across multiple threads over the network, but does not provide any ordering guar-
antees on RDMA instructions enclosed within critical sections. Nevertheless, it is
possible to recover such strong ordering guarantees on RDMA operations within
awlock critical section by inserting a global fence immediately before the lock is
released. To capture this, we thus develop a strong lock, slock, that guarantees
the desired strong guarantees by executing a global fence before releasing the
lock. The most novel aspect of our library is the notion of a node lock, nlock,
that takes a node n as a parameter, and only guarantees synchronisation on
RDMA operations specific to n, while operations within a critical section acting
on a different node n′ ̸= n are left unsynchronised.

Interestingly, we show that it is possible to build a novel, strong model for
RDMA using nlock. Specifically, we develop the rdmasc

rmw library, which, unlike
rdmawait, provides support for strong isolation of remote RMW instructions,
with strong synchronisation akin to SC.1

For each library L in our development (Fig. 1), we 1) formally specify L; 2) de-
velop a reference implementation of L using lower-level libraries; and 3) prove
our implementation is correct against its specification. For (1) and (3), we use
mowgli [4], a declarative framework previously used to verify a subset of loco
(those without RMWs). mowgli is a compositional framework for specification
and verification of very weak libraries where program order is not preserved (e.g.
RDMA programs). However, previous definitions [4] are not sufficient to specify
remote RMWs out of the box, and we extend them with the features needed (§3).
Contributions. Our core contributions are as follows. (1) We develop the first
formal semantics of remote RMWs through the rdmatso

rmw and rdmawait
rmw mod-

els by carefully inspecting the (informal) technical specification [21]. Our models
have further been validated by NVIDIA engineers. (2) We generalise mowgli
to add the intricate features needed for specifying and verifying very weak li-
braries. We then use loco and our extension of mowgli to develop several pro-
grammer-friendly and composable RDMA libraries. Specifically, (3) we specify,
implement and verify three lock libraries offering varying degrees of synchro-
nisation guarantees and efficiency; and (4) we develop a novel, strong RDMA
model, rdmasc

rmw, ensuring strong isolation of RDMA instructions with strong
synchronisation guarantees of SC.

Outline. The remainder of this article is organised as follows. In §2 we discuss
the necessary background and present an intuitive overview of our contribu-
tions. In §3 we describe how we extend the mowgli framework and present our
rdmawait

rmw model. In §4 we present our three lock libraries (including their spec-
ification, implementation, and verification), which we build on top of rdmawait

rmw .
In §5 we specify, implement, and verify our rdmasc

rmw library (simulating SC in
RDMA programs). Finally, we discuss related work in §6.
1 In related work, Ambal et al. [5] write rdmasc for an RDMA model where the
underlying CPU is SC (instead of TSO). This is unrelated to rdmasc

rmw.

3

2 Background and Overview

We present an intuitive account of our contributions via a series of litmus tests.
We begin with a summary of necessary background (§2.1 and §2.2). We discuss
the behaviour of remote RMW (‘read-modify-write’) synchronisation, culminat-
ing in our formal rdmawait

rmw model (§2.3). We then describe our RDMA libraries
(§2.4), including locks and a library for sequential consistency we build from it.

Terminology and Litmus Test Notation. Throughout this article, we present
small examples (litmus tests) to highlight particular behaviours. A single verti-
cal bar (e.g. in Fig. 8a) separates threads on the same (network) node, while a
double vertical bar (e.g. in Fig. 2a) separates distinct nodes. For each annotated
outcome, ✓ denotes that the outcome is allowed by the semantics, while ✗ states
that the outcome is disallowed. To distinguish local and remote (memory) loca-
tions, we write xn for a location on a remote node n, and write x for a location
on the current local node. We number nodes from left to right, starting at 1.
The statement on the top line of each column denotes where locations reside as
well as their initial values; e.g. x=0 and z=0 on top of Fig. 2a denote that x
and z respectively reside on nodes 1 and 2 with initial value 0. When a thread
on local node n issues a remote operation to be executed on remote node n′, we
denote this by stating that the operation is by n towards n′.

2.1 Background: rdmatso, rdmawait, and loco

The rdmatso Model. Ambal et al. [3] developed rdmatso, the first formal
model of RDMA programs where the underlying CPUs are assumed to follow
the x86-TSO memory model [26]. rdmatso formalises the semantics of RDMA
Writes (referred to as puts), RDMA Reads (referred to as gets) and polling
instructions, executed by the network interface card (NIC). A put operation
towards n, written xn := y, reads from local location y (referred to as a NIC
local read) and writes to remote location x on node n (a NIC remote write).
Similarly, a get operation towards n, written y := xn reads from remote location
x (a NIC remote read) and writes to local location y (a NIC local write). The
rdmatso semantics is unintuitive as remote operations are executed by NIC
independently from later CPU operations, as if run in parallel to them. For
instance, the program z2 := x;x := 1 (comprising a put towards node 2, followed
by a standard CPU store) can result in z containing value 1 as follows: 1) CPU
offloads the put instruction to the NIC; 2) CPU executes x := 1; 3) NIC executes
the put, fetching the new value 1 of x and updating the remote location z in
node 2 to this new value. To prevent this weak behaviour, a programmer can
poll the remote instruction (towards node 2) by executing Poll(2), as shown
in Fig. 2a: this blocks the CPU until the NIC confirms that the put has been
executed, thereby preventing the above scenario.

The polling system on RDMA hardware (and thus rdmatso) is highly brittle
in that it synchronises with the earliest (in program order) unpolled remote
operation. For instance, in Fig. 2b the single poll only acknowledges the first

4

x=0 z=0

z2 := x
Poll(2)
x := 1

(a) z = 0 ✓

z = 1 ✗

x=0 z=0

z2 := x
z2 := x
Poll(2)
x := 1

(b) z = 0 ✓

z = 1✓

x=0 z=0

z2 := x
z2 := x
Poll(2)
Poll(2)
x := 1

(c) z = 0 ✓

z = 1✗

Fig. 2: Polling on rdmatso

x=0 z=0

z2 :=d x
Wait(d)
x := 1

(a) z = 0 ✓

z = 1 ✗

x=0 z=0

z2 :=e x

z2 :=d x
Wait(d)
x := 1

(b) z = 0 ✓

z = 1 ✗

Fig. 3: Waiting on rdmawait

put, and the second put can be arbitrarily delayed, once again enabling the
outcome z = 1. Preventing unintended weak behaviours therefore often relies on
counting remote operations and polling them accordingly; e.g. in this case we
must use two polls to prevent the weak outcome, as in Fig. 2c.

The rdmawait Model. The non-local semantics of polls does not lend itself
to compositional programming and verification. That is, the polling semantics
depends on the exact number of earlier remote operations towards the same
node. To address this, recent work developed loco [4] as an RDMA library
for composable objects with a more abstract completion system that ensures
modularity and compositionality through a waiting instruction that is analogous
to polling but is compositional. Specifically, in loco each remote operation is
associated with a work identifier, d ∈ Wid, and the wait operation Wait(d)
ensures the completion of all previous operations with this identifier (multiple
remote operations may have the same identifier). This is illustrated in Figs. 3a
and 3b (obtained from Figs. 2a and 2b by replacing polls with waits), where
z2 :=d x denotes a put (as before) with work id d. Note that unlike in Fig. 2b,
adding an earlier put in Fig. 3b (with different work id e) does not alter the
behaviour of Wait(d) and the weak outcome z=1 remains prohibited.

From a reordering perspective, rdmawait is still quite permissive. For exam-
ple, because a remote NIC sends an acknowledgement for a put as soon as it
is received (but before the put takes effect in memory), rdmawait permits the
store-buffering behaviour in Fig. 4. Therefore, using rdmawait, loco addition-
ally implements a global-fence operation towards a node n, written GFence({n}),
that blocks until all previous remote operations towards n are fully completed
(see §4.1). Replacing Wait(d) and Wait(e) in Fig. 4 respectively with fences
GFence({2}) and GFence({1}) would prevent the store-buffering behaviour.

2.2 Background: mowgli

To support compositional specification and verification, Ambal et al. have de-
veloped the mowgli framework [4]. They have specified the rdmawait formal
model (obtained from rdmatso by replacing the poll instruction with Wait) in
mowgli and subsequently used it as a foundation for developing and verifying
a suite of RDMA libraries. The principal one is a shared variable (sv) library
(see §4.1), where each node possesses a local copy of each variable x. The meth-
ods include store (x :=sv v) and load (a :=sv x) operations to access the local

5

y = 0 x = 0

x2 :=d 1
Wait(d)
a := y

y1 :=e 1
Wait(e)
b := x

(a, b) = (0, 0) ✓

Fig. 4: Store buffering

SVar x = 0

z = 0

z2 := 1
x :=sv 1
Bcastsv(x)

a :=sv x
b := z

(a) (a, b)=(1, 0) ✗

SVar x = 0

y, z = 0, 0

z2 := 1
x :=sv 1
Bcastsv(x)

a := y
b := z

c :=sv x
y2 := 1

(b) (a, b, c) = (1, 0, 1) ✓

Fig. 5: Shared variable examples

copy, as well as a broadcast (Bcastsv(x)) operation to forward the local value to
other nodes.

Specification. mowgli [4] is a declarative framework for modularly specifying
and verifying libraries in the context of (very) weak concurrency models. Unlike
other declarative frameworks in the literature [27, 31], mowgli can handle the
behaviours allowed by RDMA programs. The key novelty in mowgli enabling
this is the use of a fixed set of stamps, Stamp = {a1, . . .}, and the stamp-order
relation, sto ⊆ Stamp× Stamp, defined as a subset of the program order that is
preserved. This then allows one to define weak libraries where the program order
is not fully preserved, as is the case in RDMA.

We present the stamps and their ordering in Fig. 9 (assuming that the un-
derlying CPUs follow the TSO model). Intuitively, each stamp denotes a be-
haviour category, such as a CPU write (aCW), a CPU read (aCR), a NIC remote
read (aNRRn) or write (aNRWn) towards n, or a NIC local read (aNLRn) or write
(aNLWn) towards n. Compared to [4], we also introduce a new stamp aNARn to
represent the ordering guarantees of remote RMWs (see §2.3).

This stamp mechanism addresses two problems. The first is the reordering of
methods of different libraries. As libraries are defined independently, the exact
interaction between pairs of methods of different libraries cannot be explicit. In-
stead, libraries can associate their method calls with generic behaviour categories
(stamps), so that their interactions can be implicitly deduced. For instance, in
Fig. 5a, z2 := 1 and b := z are part of rdmawait

rmw , while Bcastsv(x) and a :=svx
are part of the sv library. To determine if the outcome (a, b)=(1, 0) is allowed,
we need to check if z2 := 1 and Bcastsv(x) can be reordered on node 1, and
if a :=sv x and b := z can be reordered on node 2. The semantics of the two
libraries (§3 and §A) ensure that z2 :=1 and Bcastsv(x) behave as remote writes
towards node 2 (stamp aNRW2) and that a :=sv x and b := z behave as CPU reads
(stamp aCR). This enforces their respective program orders as ⟨z2 := 1, aNRW2⟩
ppo−−→ ⟨Bcastsv(x), aNRW2⟩ and ⟨a :=sv x, aCR⟩ ppo−−→ ⟨b := z, aCR⟩, where ppo is the
preserved program order, i.e. they cannot be reordered. Moreover, if a=1, then

we have the happens-before (hb) relation ⟨Bcastsv(x), aNRW2⟩
hb−→ ⟨a :=sv x, aCR⟩,

and as ppo ⊆ hb, by transitivity we have ⟨z2 := 1, aNRW2⟩
hb−→ ⟨b := z, aCR⟩, i.e.

the weak outcome (a, b)=(1, 0) is prohibited.
The second problem stamps address is the partial execution of methods.

A method call may have multiple visible effects, and observing one does not
necessarily imply that others are also observed. In Fig. 5b the shared variable

6

x is read by the third node, which then sends a message to node 2 (through

y2 := 1). As such, when (a, c) = (1, 1), we have a
hb−→ chain from Bcastsv(x)

to b := z and may naturally expect c = 1. However, this is not case. Specifi-
cally, as per the semantics of sv, Bcastsv(x) is associated with (at least) two
stamps, aNRW2 (remote write towards node 2) and aNRW3 (remote write towards
node 3), where the latter is observed but is not ordered with the earlier z2 := 1
operation (as they are toward different nodes). That is, we have the hb or-

ders ⟨z2 := 1, aNRW2⟩
ppo⊆hb−−−−→ ⟨Bcastsv(x), aNRW2⟩ (as in example Fig. 5a) and

⟨Bcastsv(x), aNRW3⟩
hb−→ ⟨b := z, aCR⟩, and when put together they do not imply

⟨z2 := 1, aNRW2⟩
hb−→ ⟨b := z, aCR⟩, allowing the weak outcome b = 0. In other

words, z2 := 1 and Bcastsv(x) can be partially reordered: although their respec-
tive updates (on z and x) towards node 2 stay ordered, the update on x towards
other nodes (i.e. node 3) may take place before z2 := 1 is executed. Associating
a method call with multiple stamps allows us to express such nuances.

Implementation and Soundness. Within the mowgli framework, Ambal
et al. [4] also formalise the notion of a library implementation and what it means
for an implementation I to be sound against its specification, i.e. that the be-
haviours of the implementation are contained in those of its specification. To
enable proving implementation soundness compositionally, they establish a local
soundness theorem. Specifically, to show that an implementation I of library L
is correct, one must show that for all client programs P with calls to L (where
P may in general contain calls to libraries other than L), replacing the calls
to L with their corresponding (inlined) implementation yields the same out-
come. Intuitively, as the only calls being replaced (inlined) are those of L, the
calls to libraries other than L should not affect the outcome. That is, it should
be sufficient to show that the implementation is locally sound by considering
client programs that only constitute calls to L. Ambal et al. then prove that
local soundness implies soundness: if I is a locally sound implementation of L
(i.e. for all client programs that only comprise calls to L), then I is a sound
implementation of L (i.e. for all client programs).

As we discuss below, we use mowgli to specify several RDMA libraries and
verify their implementations, as shown in Fig. 1.

2.3 Remote Read-Modify-Write Operations

CPU Read-Modify-Writes. Read-modify-writes (RMW) are a category of
synchronisation operations that simultaneously read the value v of a location
and update (modify-write) it in place. Examples of common RMWs include the
compare-and-swap, CAS(x, v1, v2), instruction (it reads the current value v of
x and updates it to v2 if v = v1 and otherwise leaves it unchanged); and the
fetch-and-add, FAA(x, v), instruction (it increments the value of x by v uncondi-
tionally). Both operations return the old value of x. These operations are useful
for ensuring inter-thread synchronisation and are often used to implement strong
synchronisation mechanisms such as locks (mutexes).

7

x = 0

RCAS

(a, x2, 0, 2)
x := 1

(a) x = 2 ✓

x = 0

RCAS

(a, x3, 0, 2)
x3 := 1

(b) x = 2 ✓

x = 0

RCAS

(a, x3, 0, 2)
RFAA

(b, x3, 1)

(c) x = 2 ✗

Fig. 6: Examples showcasing the limited atomicity of remote RMW operations

x = 0

a := CAS(x, 0, 2) x := 1

x = 2 ✗

CPU RMWs behave atomically : their ‘read’ and
‘modify-write’ phases cannot be interleaved by con-
current instructions. As such, RMWs are commonly
referred to as ‘atomic operations’. This is illustrated
in the example across where the outcome x=2 is disallowed. If the right thread
executes first, then x is updated to 1 and subsequently the CAS fails. If the left
thread executes first, then the right thread overwrites x to 1.

Remote RMWs. The RDMA hardware specification [21] optionally supports
two remote RMW instructions, referred to as ‘atomics2’: RCAS(a, x, v1, v2), anal-
ogous to a := CAS(x, v1, v2) on CPUs, and RFAA(a, x, v), analogous to a :=
FAA(x, v) on CPUs, where x is a remote location in both cases.

Unlike CPU RMWs, remote RMWs do not always behave atomically: their
‘read’ and ‘modify-write’ phases may be interleaved by other CPU or (remote)
put/get instructions. This is illustrated in the examples of Figs. 6a and 6b, exe-
cuting a remote CAS in parallel with a CPU store (Fig. 6a) and a put (Fig. 6b),
where the remote CAS can first read 0 from x, be interleaved with the concurrent
CPU store/put writing 1 to x, and then update x to 2.

This weakness is due to an inherent hardware limitation. Atomicity is possible
on CPUs because a CPU core can: 1) request exclusive access to a cache line;
2) read the cache line; 3) write to the cache line; 4) release the cache line.
During periods of exclusive access, other components (e.g. other CPU cores or
the NIC) cannot access the cache line in-between the ‘read’ and ‘modify-write’.
This, however, is not feasible over RDMA since NICs cannot lock a cache line;
they can only submit read and write operations to their PCIe root complex. As
such, it is not possible to block accesses by other components (e.g. the CPU)
interleaving between the NIC’s ‘read’ and the ‘modify-write’.

Nevertheless, remote RMWs do behave atomically with respect to other re-
mote RMWs. For instance, as shown in Fig. 6c, a remote FAA cannot interleave
between the ‘read’ and ‘modify-write’ phases of a remote CAS.

In practice, one can ensure atomicity of accesses to a location x by ensuring x
is only ever accessed through remote RMWs. As such, it is common for RDMA
programs to access local locations (i.e. those residing on their node) through
remote RMWs (via loop-back). To provide atomicity between remote RMWs
and other operations, we require software solutions, as supported by rdmasc

rmw.

2 Although RMWs are commonly referred to as ‘atomics’ in the RDMA specification,
they do not always behave atomically.

8

x, y = 0, 0

a := x2

y2 := 1
b := y
x := 1

(a) (a, b) = (1, 1) ✓

x, y = 0, 0

RCAS(a, x2, 8, 9)
y2 := 1

b := y
x := 1

(b) (a, b) = (1, 1) ✗

y = 0 x = 0

RFAA(, x2, 1)
Poll(2)
a := y

RFAA(, y1, 1)
Poll(1)
b := x

(c) (a, b) = (0, 0) ✓

Fig. 7: Examples of remote RMW behaviours and how they compare from Puts.

Extending rdmatso with RMWs. The rdmatso and rdmawait models do
not include the semantics of remote RMWs; we close this gap in this work.
Specifically, starting from rdmatso [3], we formulate rdmatso

rmw both declaratively
and operationally and prove the two characterisations are equivalent (see §D).

Our main reference for modelling the semantics of remote RMWs is the Infini-
band technical specification [21]. However, as the specification is often ambigu-
ous, we developed our model in close collaboration with NVIDIA experts spe-
cialising in RDMA hardware who confirmed the expected behaviours of RMWs
and that our model captures them faithfully.

Compared to rdmatso, our rdmatso
rmw declarative model brings two impor-

tant changes. The first is a new relation, the ‘remote-atomic-order ’ rao, capturing
the mutual exclusion of remote RMWs. We require a total order raon on remote
RMWs towards each node n, such that raon ⊆ hb (i.e. it induces synchronisa-
tion). The second is a new stamp, aNARn (the ‘NIC atomic read’), encoding the
new ordering guarantees of the read phase of a remote RMW (see Fig. 9). Recall
that a Get performs a NIC remote read (stamp aNRRn) followed by a NIC local
write (aNLWn), while a Put performs a NIC local read (aNLRn) followed by a NIC
remote write (aNRWn). Analogously, a remote RMW, e.g. RFAA(x, y, v), performs
(up to) three NIC accesses: 1) it remotely reads y (aNARn); 2) remotely updates
y (aNRWn); and 3) locally writes (the return value) to x (aNLWn).

Note that the stamp aNARn is required because a remote read stamp (aNRRn)
is insufficient for modelling the stronger ordering guarantees of the ‘read’ phase
of an RMW. We show an example of this in Figs. 7a and 7b. The (remote)
read phase of a Get (aNRRn) may be delayed (reordered) after a later remote
write (aNRWn of a Put or RMW). As such, the weak ‘load-buffering’ behaviour
in Fig. 7a is allowed. By contrast, the read phase of a remote RMW (aNARn)
cannot be delayed, and thus the analogous behaviour is prohibited in Fig. 7b.

Finally, the example in Fig. 7c shows that the remote write (‘modify’) phase
(aNRWn) of an RMW behaves similarly to that of a Put. In particular, a poll
does not enforce the full completion of the remote write and thus the weak
‘store-buffering’ behaviour presented is allowed, similarly to Fig. 4.

Supporting Modularity with rdmawait
rmw . As rdmatso

rmw is not modular, we
develop rdmawait

rmw by adapting rdmawait [4, 20]. We then implement rdmawait
rmw

using rdmatso
rmw and prove that it is correct (§C) against its specification.

9

2.4 Modular RDMA Synchronisation Libraries

We now implement RDMA libraries modularly and specify and verify them using
mowgli. A key use case of our remote RMWs is for implementing network-wide
locks that ensure mutual exclusion of critical sections. A lock library provides
two main operations, Acq(l) and Rel(l), for acquiring and releasing a lock l,
respectively. When specifying such a network lock, there are several choices for
defining its semantics as there are trade-offs between the guarantees (strength)
of a lock and the efficiency of its implementation.

Fig. 8 presents several variants of an example where two threads use a lock l
to access locations x and y in a critical section (the first thread writing to x and
y and the last thread reading from x and y). As the locks are expected to ensure
atomicity of the critical sections (enclosed within the lock acquisition and release
blocks), the expected outcomes are either a= b= 0 or a= b= 1, i.e. not a ̸= b.
However, ensuring this strong guarantee for locks is not straightforward over
RDMA. Specifically, while ensuring mutual exclusion is necessary for prohibit-
ing the weak a ̸= b behaviour, it is not sufficient. We must additionally ensure
that the operations enclosed in a critical section are completed before the end
of the critical section (and hence are not reordered past the lock release). How-
ever, as we demonstrated above, meeting these latter constraints are not always
straightforward due to the weak ordering guarantees on remote operations.

Weak Lock Library. The weakest network lock that we consider ensures mu-
tual exclusion only, but does not prohibit the enclosed operations from being
reordered. As shown in Fig. 8a, when the operations enclosed in a critical sec-
tion are CPU loads and stores, the weak outcome a ̸=b is prohibited. By contrast,
as shown in Fig. 8b, when the enclosed operations are over RDMA (two Puts
in Fig. 8b), then a weak lock is insufficient and we may observe a ̸= b. This is
because the remote operations may not complete before the critical section ends.

Thus, we require an operation akin to a global fence (see §2.1) to ensure
that these remote operations are completed. Note that as shown in Fig. 8c, the
global fence in isolation (without the protection provided by a weak lock) is also
insufficient for prohibiting the weak behaviour as it only provides intra-thread
synchronisation (and does not ensure mutual exclusion). However, as shown in
Fig. 8d, if we combine a weak lock with a global fence, we can attain the desired
strong guarantees and prohibit a ̸=b.

Strong Lock Library. The weak lock library discussed above is efficient and
gives programmers full control over synchronisation. However, if not used cor-
rectly, without the relevant global fences, its guarantees are not as strong as
one may expect. That is, in designing the weak lock library, we opted for bet-
ter performance over the strength of guarantees. We next develop a strong lock
library that achieves the desired strong guarantees (without the need for ad-
ditional synchronisation via fences). Specifically, on releasing a strong lock all
earlier operations are guaranteed to have fully completed.

This is illustrated in Fig. 8e, where the outcome a ̸= b is once again prohib-
ited. However, the strong guarantees of strong locks come at the cost of their
implementation efficiency. Intuitively, an implementation of a strong lock release

10

x, y = 0, 0

Acqwl(l)
x := 1
y := 1
Relwl(l)

Acqwl(l)
a := x
b := y
Relwl(l)

(a) a ̸= b ✗

x, y = 0, 0

Acqwl(l)
x2 := 1
y2 := 1
Relwl(l)

Acqwl(l)
a := x
b := y
Relwl(l)

(b) a ̸= b ✓

x, y = 0, 0

x2 := 1
y2 := 1
GFence({2})

a := x
b := y

(c) a ̸= b ✓

x, y = 0, 0

Acqwl(l)
x2 := 1
y2 := 1
GFence({2})
Relwl(l)

Acqwl(l)
a := x
b := y
Relwl(l)

(d) a ̸= b ✗

x = 0 y = 0

Acqsl(l)
y2 := 1
x := 1
Relsl(l)

Acqsl(l)
a := x1

b := y
Relsl(l)

(e) a ̸= b ✗

x, y = 0, 0

nlock l

Acqnl(l
2)

x2 := 1
y2 := 1
Relnl(l

2)

Acqnl(l
2)

a := x2

b := y2

Relnl(l
2)

(f) a ̸= b ✗

Fig. 8: Examples of weak, strong, and node lock behaviours

issues a global fence towards every node on the network to ensure that there are
no pending remote operations. This is in contrast to a weak lock release imple-
mentation that issues no fence by default, and developers have full control over
fencing the relevant nodes.

Node Lock Library. As a midway between the efficient weak locks, requiring
manual synchronisation, and the inefficient strong locks, we develop the concept
of (more fine-grained) node locks. Intuitively, as shown in Fig. 8f, a node lock
l is associated with a specific node n (node 2 in Fig. 8f) and provides strong
guarantees only for locations on n.

A node lock is stronger than a weak lock: as shown in Fig. 8f the weak
behaviour a ̸= b is prohibited without the need for additional synchronisation.
Moreover, a node lock is weaker than a strong lock in two ways. First, it only
provides guarantees for operations towards one node. For instance, consider a
variant of the example in Fig. 8f where the lock l is associated with node 1
(instead of 2); the outcome a ̸= b would once again be allowed. Second, it does
not provide any intra-thread ordering guarantees in that releasing a node lock
does not guarantee that previous operations (even towards the associated node)
have completed. For instance, in the program Acqnl(l

2); z2 := x; Relnl(l
2);x := 1

the outcome z = 1 is allowed : z2 := x and the lock release may not have fully
completed before the CPU runs the subsequent x := 1 store; i.e., while z2 := x
cannot be reordered past Relnl(l

2), the x := 1 can be reordered before both
of them. More concretely, our implementation of Relnl (§4.4) comprises RDMA
operations that can be delayed after later CPU operations.

Nevertheless, as a common usage of a lock is to protect a specific object that
is likely to reside on a single node, this level of guarantee is sufficient for many
applications, while enabling efficient implementations.

The rdmasc
rmw Library. Lastly, to simplify RDMA programming, we specify and

implement the rdmasc
rmw library that fully abstracts away the notion of nodes

and provides strong sequentially consistent (SC) [23] semantics via four (per-
location) instructions, Writesc, Readsc, CASsc, and FAAsc analogous to stores,

11

loads, and RMWs on CPUs with strong SC semantics. Our implementation uses
node locks to wrap RDMA operations and ensure they become visible in the
order they are submitted. Indeed, as we discuss later in §5, we can use the same
approach to implement any concurrent data structure over RDMA, and show
that it is correct in that it is linearisable [19].

3 Extending rdmawait to rdmawait
rmw

We present rdmawait
rmw model, an extension of rdmawait [4] with remote RMW in-

structions. Our definitions naturally extend those of rdmawait. To underline the
distinction between the two, we have highlighted our extensions from rdmawait

to rdmawait
rmw . We specify rdmawait

rmw in mowgli [4], yielding a modular seman-
tics that enables compositional reasoning. In particular, as we show below, since
loco libraries can be freely composed together, this allows us to use the locality
result of mowgli to verify each library modularly (in isolation). We proceed
with an account of mowgli preliminaries (§3.1) and present rdmawait

rmw in §3.2.

3.1 The mowgli Framework Preliminaries

We assume two sets for threads t ∈ Tid and nodes n ∈ Node, where each thread t
is associated with a node n(t). Recall from §2.2 that mowgli can be instantiated
with a set of stamps Stamp and a relation sto ⊆ Stamp× Stamp. In the case of
rdmawait and rdmawait

rmw , the stamps and their associated sto are as presented in
Fig. 9. Note that certain stamps, e.g. aNLRn, are associated with a node n, and
each induce a family of stamps, e.g. aNLR ≜

⋃
n∈Node {aNLRn}. The highlighted

sections (row H and column 8) denote our extensions from rdmawait to rdmawait
rmw

and are associated with the new stamp family aNAR used to specify RMWs
(see §2.2). The ✓ (e.g. in cell A2) denotes that the corresponding stamps (e.g.
aCR and aCW) are ordered in that the program order between their constituent
subevents is preserved and thus their effects are observed in order. Conversely,
✗ denotes that the stamps are not ordered (they may be reordered) and thus
the effects of their subevents may be observed out of order. The sn denotes the
stamps are ordered if and only if they are associated with the same node.

Libraries. Intuitively, a library L specification identifies its associated methods
as well as the semantics of these methods. A method call is of the form m(ṽ),
where m denotes the method name and ṽ denote its arguments. Ambal et al.
capture the method semantics in mowgli by identifying the set of executions
that are L-consistent in that they uphold the guarantees promised by L. To this
end, they associate L with a set C of L-consistent executions. A library is then
formally defined as a triple L=⟨M, loc, C⟩, where M is its set of method names
(e.g. Write or Put); loc associates each method call with its set of accessed
locations (within the method call arguments); and C is its set of L-consistent
executions. (mowgli further requires C to adhere to some basic properties to
ensure modularity [4], which we elide here.) We use the prefix ‘L.’ to project the
components of a library L, e.g. L.M .

12

Later (in Program Order) Stamp

sto
single families

1 2 3 4 5 6 7 8 9 10 11 12
aCR aCW aCAS aMF aWT aNLRn aNRWn aNARn aNRRn aNLWn aRFn aGFn

E
a
rl
ie
r
(i
n
P
ro
g
ra
m

O
rd
er
)
S
ta
m
p

si
n
g
le

A aCR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B aCW ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C aCAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D aMF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E aWT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

fa
m
il
ie
s

F aNLRn ✗ ✗ ✗ ✗ ✗ sn sn sn sn sn sn sn

G aNRWn ✗ ✗ ✗ ✗ ✗ ✗ sn sn sn sn ✗ sn

H aNARn ✗ ✗ ✗ ✗ ✗ ✗ sn sn sn sn sn sn

I aNRRn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sn sn sn

J aNLWn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sn ✗ sn

K aRFn ✗ ✗ ✗ ✗ ✗ sn sn sn sn sn sn sn

L aGFn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 9: The sto order in rdmawait and rdmawait
rmw , where highlighted cells denote

our extensions from rdmawait to rdmawait
rmw . The ✓ denotes that the (program-

order-related) stamps are ordered ; the ✗ denotes that the stamps are not ordered ;
the sn denotes the stamps are ordered iff they are associated with the same node.

Events and Executions. In the literature of declarative models, traces of a
program are represented as a set of executions. An execution is a graph com-
prising: 1) a set of events (graph nodes), where each event is associated with
the execution of a method call; and 2) a number of relations on events (graph
edges). For instance, if thread t executes a Read(x) and reads value v, the cor-
responding event is of the form ⟨t, ι, ⟨Read, (x), v⟩⟩, where ι denotes its (unique)
event identifier. Identifiers serve to distinguish calls to the same method (with
same arguments and output) by the same thread in an execution. For an event
e, we write t(e) and m(e) to extract its thread and method name, respectively.

Definition 1 (Events and Executions). An event is a tuple ⟨t, ι, ⟨m, ṽ, v′⟩⟩,
where t ∈ Tid denotes the executing thread, ι is the (unique) event identifier, m
denotes the method being executed, ṽ ∈ Val∗ is the method input (arguments)
and v′ ∈ Val is its output (return value, which may be unit ()). An execution G
is a tuple ⟨E, po, stmp, so, hb⟩ where:

• E is the set of events;
• po ⊆ E × E is the (strict) program order, total for each thread;
• stmp : E → P(Stamp) associates each event with a non-empty set of stamps
and induces a set of subevents, SEvent ≜ {⟨e, a⟩ | e ∈ E ∧ a ∈ stmp(e)};

• so ⊆ SEvent × SEvent is the synchronisation order, representing the intra-
library dependencies exported by each library;

• hb ⊆ SEvent× SEvent is the happens-before order, a strict partial order such
that so ∪ ppo ⊆ hb, where ppo ⊆ SEvent × SEvent denotes the preserved
program order capturing inter-library dependencies and is defined as follows:

ppo ≜ {⟨⟨e1, a1⟩, ⟨e2, a2⟩⟩ | ⟨e1, e2⟩ ∈ po ∧ ai ∈ stmp(ei) ∧ ⟨a1, a2⟩ ∈ sto}

13

Notations. Given a set A and a relation r ⊆ A×A, we write r+ for the transitive
closure of r; r∗ for its reflexive transitive closure; r−1 for the inverse of r; and
[A] for the identity relation on A, i.e. {⟨a, a⟩ | a∈A}. We write r1; r2 for the
relational composition of r1 and r2: {⟨a, b⟩ | ∃c. ⟨a, c⟩∈ r1 ∧ ⟨c, b⟩∈ r2}. We write
A|c to restrict A with condition c. For instance, given a set of events E, we define
E|L ≜ {e ∈ E | m(e)∈L.M}, E|t ≜ {e ∈ E | t(e) = t}, and we write E|d for the
set of events in E with work identifier d. We define Ex ≜ {e ∈ E | x ∈ loc(e)}.
Similarly, we define r|c ≜ [A|c]; r; [A|c] (e.g. po|t) and rx ≜ [Ex]; r; [Ex] (e.g. pox).
Given a subset A′ ⊆ A, we define r|A′ ≜ [A′]; r; [A′]. When r is a strict partial
order, we write r|imm for its immediate edges, i.e. r \ (r; r).

Given execution G=⟨E, po, stmp, so, hb⟩, we write G|L for ⟨E|L, po|L, stmp|L,
so|L, hb|L⟩, where stmp|L denotes the function obtained by restricting the domain
of stmp (i.e. E) to E|L. We use the prefix ‘G.’ to project the components of G
(e.g. G.po), including its derived ones (e.g. G.SEvent). Given a stamp a, we write
G.a for {s ∈ G.SEvent | s = ⟨ , a⟩}; analogously for a stamp family, e.g. G.aNRR.
We define the set of read subevents as G.R ≜ G.aCR∪G.aCAS∪G.aNLR∪G.aNAR∪
G.aNRR, and write subevents as G.W ≜ G.aCW∪G.aCAS∪G.aNLW∪G.aNRW. Given
a set of subevents A, we define Ax ≜ {s ∈ A | loc(s) = {x}}; e.g. G.Wx is the
set of write subevents on x. When the choice of G is clear, we omit ‘G.’, e.g. we
simply write W for G.W and [aCW] for [G.aCW].
Consistency. An execution is consistent against a set of libraries Λ iff 1) G|L is
L-consistent for each L ∈ Λ; 2) its events and their synchronisation are those of
the libraries in Λ; and 3) its happens-before relation is irreflexive. Note that the
first condition ensures modularity as each library can specify independently the
visible behaviours of its functions (stamps), its allowed outcomes (consistency)
and the synchronisation (guarantees) it offers (so).

Definition 2 (Consistency). Let Λ be a set of libraries where L1.M∩L2.M=
∅ for distinct L1, L2. An execution G=⟨E, po, stmp, so, hb⟩ is Λ-consistent iff:

• For all L ∈ Λ: G|L ∈ L.C (i.e. G is L-consistent for each L ∈ Λ);
• E =

⋃
L∈Λ E|L and so =

⋃
L∈Λ so|L; and

• hb is irreflexive (i.e. hb is a strict partial order).

3.2 The Declarative rdmawait
rmw Model

We present rdmawait
rmw as an extension of rdmawait [4] with remote RMWs. Our

definitions naturally extend those of rdmawait. To underline the distinction be-
tween the two, we have highlighted our extensions from rdmawait to rdmawait

rmw .

The rdmawait
rmw Methods. rdmawait

rmw methods extend those of rdmawait with
remote RMWs as defined by the following grammar, where rdmawait methods
comprise local (CPU) operations on TSO machines and remote operations.
m(ṽ) ::= Write(x, v) | Read(x) | CAS(x, v1, v2) | Mfence() // rdmawait: Local

| Get(x, y, d) | Put(x, y, d) | Wait(d) | Rfence(n) // rdmawait: Remote

| RCAS(x, y, v1, v2, d) | RFAA(x, y, v, d) // Remote RMWs

14

The remote operations comprise Get, Put, Wait (as described in §2.1), and
Rfence instructions. Note that for readability in our examples we write x :=d yn

(resp. xn :=d y) for Get(x, y, d) (resp. Put(x, y, d)). Similarly, we write x := v
(resp. a := x) for Write(x, v) (resp. let a = Read(x) in . . .). The Rfence(n)
denotes a remote fence that strongly orders all operations towards n with-
out blocking the (local) CPU. That is, given a (sequential) program of the
form C; Rfence(n);C ′, all remote operations towards n in C are ordered be-
fore those in C ′. The RCAS(x, y, v1, v2, d) is the remote analogue of writing
let v = CAS(y, v1, v2) in Write(x, v) with work identifier d, where the RMW is
run on remote location y and the result is written to local location x. Similarly,
RFAA(x, y, v, d) increments (remote) y by v and writes its old value to x.

Well-addressed rdmawait
rmw Executions. We assume each location x is associ-

ated with exactly one node denoted by n(x). We write n(t) to denote the node on
which t is run. An execution G is well-addressed iff it comprises method calls (in
G.E) with appropriate local locations when expected; e.g. for each Write(x,) or
Put(, x,) call by thread t in G, n(x)=n(t). We define loc for rdmawait

rmw as ex-
pected; e.g. loc(Write(x,))={x}, loc(Put(x, y,))={x, y} and loc(Mfence)=∅.
Well-stamped rdmawait

rmw Executions. An execution G is well-stamped if for all
e = ⟨ , , ⟨m, (ṽ), v′⟩⟩ ∈ G.E: G.stmp(e) ∈ stmpRW(m(ṽ), v′), with stmpRW defined
as follows. Note that depending on whether RCAS calls succeed, they may have
multiple valid sets of stamps; as such, the stmpRW function returns a set of stamp
sets (set of set of stamps), though in all cases but for RCAS this set is a singleton.

stmpRW(CAS(x, v1,), v2)≜

{{
{aMF, aCR}

}
if v1 ̸= v2{

{aCAS}
}

if v1 = v2

stmpRW(Get(x, y,),)≜
{{
aNRRn(y), aNLWn(y)

}}
stmpRW(Put(x, y,),)≜

{{
aNLRn(x), aNRWn(x)

}}
stmpRW(RFAA(x,y

n, ,),)≜
{
{aNARn, aNRWn, aNLWn}

}
stmpRW(Write(x, v),)≜

{
{aCW}

}
stmpRW(Read(x),)≜

{
{aCR}

}
stmpRW(Mfence(),)≜

{
{aMF}

}
stmpRW(Wait(d),)≜

{
{aWT}

}
stmpRW(Rfence(n),)≜

{
{aRFn}

}
stmpRW(RCAS(x, y, , ,),) ≜

{{
aNARn(y), aNLWn(y)

}
,
{
aNARn(y), aNRWn(y), aNLWn(y)

}}
A successful remote RMW has three stamps for reading the remote location,

modifying it, and writing it to the local location, while a failed RCAS does not
modify the remote location. Recall that the remote read of a remote RMW yields
stamp aNARn, which offers more guarantees than the stamp aNRRn of Gets.

We extend the location function (loc, defined above for rdmawait
rmw) to subevents.

For method calls corresponding to local operations (with one or zero locations)
their subevents have the same locations. The subevents of Get, Put, RCAS, and
RFAA are associated with the relevant location as expected. For instance, if e=
⟨ , , ⟨Get, (x, y, d), ⟩⟩ (with subevents aNRRn and aNLWn), then loc(⟨e, aNRRn⟩)=
{y} and loc(⟨e, aNLWn⟩) = {x}; whereas if e = ⟨ , , ⟨RFAA, (x, y, v, d), ⟩⟩, then
loc(⟨e, aNARn⟩)={y}, loc(⟨e, aNRWn⟩)={y} and loc(⟨e, aNLWn⟩)={x}.
Well-formed rdmawait

rmw Executions.We shortly define the notion of rdmawait
rmw-

consistency for an execution G. To do this, we need a few auxiliary functions and
relations as follows. We assume functions vR : G.R → Val and vW : G.W → Val,
which associate each read (resp. write) subevent with the value returned (resp.
written). We define the ‘reads-from’ relation, rf ⊆ G.W × G.R, on subevents of

15

the same location with matching values (formalised below); the ‘modification-
order ’ relation, mo ⊆ G.W×G.W, describing a (total) order in which writes reach
the memory; and the ‘NIC flush order ’, nfo, capturing the PCIe guarantee that
NIC reads flush previous NIC writes. For remote RMWs, we define the ‘remote-
atomic-order ’, rao , describing the (total) order in which remote read parts of
remote RMWs towards each node is executed. A tuple ⟨vR, vW, rf,mo, nfo, rao ⟩
is well-formed if the following hold for all e, v, v′, v1, v2, s1, s2, n, x, y.

• If e is of the form ⟨Read, , v⟩ or ⟨CAS, , v⟩, then vR(e) = v.
• If e is of the form ⟨Write, (, v), ⟩ or ⟨CAS, (, v′, v), v′⟩, then vW(e) = v
• If s1=⟨e, aNLRn⟩ ∧ s2=⟨e, aNRWn⟩, then vR(s1)=vW(s2); mutatis mutandis for
s1 = ⟨e, aNRRn⟩, s2 = ⟨e, aNLWn⟩ and s1 = ⟨e, aNARn⟩, s2 = ⟨e, aNLWn⟩.

• ⟨s1, s2⟩ ∈ rf ⇒ loc(s1) = loc(s2) ∧ vW(s1) = vR(s2).
• rf−1 is a function, i.e. every read is related to at most one write. If a read is
not related to a write, it returns zero: s2 ̸∈ img(rf) ⇒ vR(s2) = 0.

• mo ≜
⋃

x∈Loc mox, where each mox is a strict total order on G.Wx.
• if ⟨s1, s2⟩ ∈ (aNLRn × aNLWn) ∪ ((aNRRn ∪ aNARn)× aNRWn) and t(s1)=t(s2)
then ⟨s1, s2⟩ ∈ nfo ∪ nfo−1.

• RCAS succeeds iff it reads the expected value, in which case it overwrites with
the given value. That is, given e = ⟨ , , ⟨RCAS, (x, y, v1, v2,), ⟩⟩:
if stmp(e)=

{
aNARn(y), aNLWn(y)

}
, then vR(⟨e, aNARn(y)⟩) ̸= v1; and

if stmp(e)=
{
aNARn(y),aNRWn(y),aNLWn(y)

}
, then vR(⟨e, aNARn(y)⟩) = v1 and

vW(⟨e, aNRWn(y)⟩) = v2.
• If e = ⟨ , , ⟨RFAA, (x, y, v,), ⟩⟩, then vW(⟨e, aNRWn(y)⟩) = vR(⟨e, aNARn(y)⟩) + v.

• rao ≜
⋃

n∈Node raon, where raon is a strict total order on the set of subevents
{⟨e, aNARn⟩ | e = ⟨ , , ⟨m, (x, y, . . .), ⟩⟩ ∧m ∈ {RFAA, RCAS} ∧ n(y) = n}

We distinguish the point subevents start executing (point of ‘issue’) from when
they complete. We define the issued-before relation, ib, to record dependencies
between the starts of subevents, while so records dependencies between their
ends. Note that ib and so are incomparable: ⟨s1, s2⟩∈ ib does not imply ⟨s1, s2⟩∈so
and vice versa. We define instantaneous subevents, G.Inst ≜ G.SEvent\(G.aCW∪
G.aNLW ∪ G.aNRW), as those that start and end at the same time.

Given an execution G and well-formed ⟨vR, vW, rf,mo, nfo, rao⟩, we further de-
fine the following relations that will help us define ib and so for rdmawait

rmw :

rb≜

{
⟨r, w⟩ ∈ G.R× G.W

∣∣∣∣ (⟨r, w⟩ ∈ (rf−1;mo) ∨ r ̸∈ img(rf)
)

∧ loc(r) = loc(w)

}
\ [G.SEvent]

rbi≜ [aCR]; ((po ∪ po−1) ∩ rb); [aCW] pfg≜{⟨⟨e1,aNLWn⟩,⟨e2,aWT⟩⟩ | ∃d.⟨e1,e2⟩∈po|d}
rf i≜ [aCW]; (po ∩ rf); [aCR] rfe≜ rf\rf i pfp≜{⟨⟨e1,aNRWn⟩,⟨e2,aWT⟩⟩ | ∃d.⟨e1,e2⟩∈po|d}
iso ≜ {⟨⟨e, aMF⟩, ⟨e, aCR⟩⟩ | m(e) = CAS}

∪ {⟨⟨e, aNRRn⟩, ⟨e, aNLWn⟩⟩ | m(e) = Get} ∪ {⟨⟨e, aNLRn⟩, ⟨e, aNRWn⟩⟩ | m(e) = Put}
∪ {⟨⟨e, aNARn⟩, ⟨e, aNLWn⟩⟩ | m(e) ∈ {RCAS, RFAA}}
∪ {⟨⟨e, aNARn⟩, ⟨e, aNRWn⟩⟩ | m(e) ∈ {RCAS, RFAA} ∧ aNRWn ∈ stmp(e)}

The rb denotes the ‘reads-before’ relation: given a read r that reads from a write
wr, i.e. ⟨wr, r⟩ ∈ rf, then rb relates r to all writes w (on the same location) that
are mo-later than wr. The internal rb relation, rbi, restricts rb to CPU reads

16

and writes on the same thread; similarly for rf i (internal rf). The external rf,
rfe, is defined as rf edges that are not internal. The pfg (resp. pfp) relation cap-
tures the synchronisation between the local write subevent of a Get or remote
RMW (resp. remote write subevent of a Put or remote RMW) and a later Wait
with the same work identifier. As we describe shortly, while both are included
in ib, only pfg is included in so as waiting for a Put (or remote RMW) does not
guarantee that the NIC remote write has completed. The ‘internal synchroni-
sation order ’, iso, captures ordering between subevents of the same event and
ensure that a failing CPU CAS performs a memory fence before reading; RDMA
operations (Get, Put, and remote RMW) read before copying the value; and
a successful remote RMW reads before updating the remote value.

Finally, we define ib as follows and it includes a superset ippo of ppo. Specif-
ically, while a later CPU read might finish before an earlier CPU write or wait
(cells B1 and B5, in Fig. 9), they start (are issued) in order; and while a remote
fence does not guarantee previous NIC writes have completed (cells G11 and
J11, in Fig. 9), it guarantees they have at least started.

ib ≜ (ippo ∪ iso ∪ rf ∪ pfg ∪ pfp ∪ nfo ∪ rbi)
+

with ippo ≜ ppo ∪ ([aCW]; po; [aCR ∪ aWT]) ∪
⋃

n∈Node([aNRWn ∪ aNLWn]; po; [aRFn])

We next define consistency for rdmawait
rmw . We require that ib and so be ir-

reflexive (the latter is implied by irreflexivity of hb in Def. 2 as so ⊆ hb (Def. 1)).

Definition 3 (rdmawait
rmw-consistency). An execution G = ⟨E, po, stmp, so, hb⟩

is rdmawait
rmw-consistent iff it is well-addressed, well-stamped, and there exists a

well-formed tuple ⟨vR, vW, rf,mo, nfo, rao ⟩ such that:

1) ib is irreflexive; and
2) so = iso ∪ rfe ∪ pfg ∪ nfo ∪ rb ∪mo ∪ rao ∪ ([aNRW]; iso−1; rao) ∪ ([Inst]; ib).

As described above, rao captures the order in which remote read parts of
remote RMWs towards a node is executed. The extension ([aNRW]; iso−1; rao)
ensures that remote RMWs towards the same node do not overlap: if a remote
RMW succeeds, then its remote write completes before the next RMW can read.

4 Specifying and Verifying RDMA Lock Libraries

We use the rdmawait
rmw library to specify, implement, and verify three RDMA

lock libraries. As discussed in §2.4, designing an RDMA lock presents a trade-
off between strong, intuitive behaviours and efficient implementations. As such,
after introducing the required preliminaries (§4.1), we develop a weak (wlock),
strong (slock), and node (nlock) lock library.

4.1 Preliminaries

Well-formed Locks. A lock library typically provides two methods Acq(x) and
Rel(x) for acquiring and releasing a (network-shared) lock x, ensuring mutual

17

exclusion; i.e. no two thread can hold the lock on x simultaneously. We assume
the existence of a location function loc such that loc(Acq(x))=loc(Rel(x))=
{x}. We further assume that locks are used in a well-formed fashion: a thread
only acquires (resp. releases) lock x if it has not (resp. has) already acquired x.
We formalise this in Def. 4 below, requiring that each Acq(x) (resp. Rel(x)) is
followed (resp. preceded) by Rel(x) (resp. Acq(x)) in program order.

Definition 4. An execution ⟨E, po, , , ⟩ is lock-well-formed iff for all x:

1) for all ea ∈ Ex there exists an er ∈ Ex such that ⟨ea, er⟩ ∈ pox|imm; and
2) for all er ∈ Ex there exists an ea ∈ Ex such that ⟨ea, er⟩ ∈ pox|imm

where ea, er are acquire and release events: m(ea) = Acq and m(er) = Rel.

Library guarantees only hold for programs that adhere to this well-formedness
requirement. For those that do not, any behaviour is allowed.

Background: sv Library. Ambal et al. [4] use rdmawait to define higher-level
libraries such as a shared-variable library (sv) where each node maintains its
own copy for each location x. A thread then accesses (reads/writes) its own
local copies, and can broadcast its local value to other nodes. The sv library
comprises these methods: M = {Writesv, Readsv, Bcastsv, Waitsv, GFence}. The
Writesv(x, v) (resp. Readsv(x)) writes (resp. reads) value v to the local copy
of x on the current node. The Bcastsv(x, d, {n1, . . . , nk}) broadcasts the local
value of x and overwrites x on nodes n1, . . . , nk, which may include the local
node itself (where d is the work id). The Waitsv(d) waits for previous broad-
casts of the thread associated with work id d ∈ Wid. Finally, the global fence
GFence({n1, . . . , nk}) ensures every previous operation of the thread towards
nodes n1, . . . , nk is fully completed. We repeat the formal semantics of sv in §A.
In the remainder of this article we use sv to implement several libraries.

4.2 The Weak Lock Library

We present our wlock library, which only guarantees mutual exclusion, without
any guarantees on the completion order of submitted RDMA operations.

The wlock Specification. The stamps for wlock are defined through the
stmpWL function as follows. That is, acquiring a weak lock behaves as a memory
fence (stamp aMF) on TSO, while releasing it behaves merely as a write (aCW).

stmpWL(⟨t, , ⟨Acqwl, (x), ()⟩⟩) ≜ {aMF} stmpWL(⟨t, , ⟨Relwl, (x), ()⟩⟩) ≜ {aCW}

As we formulate in Def. 5 below (the second condition), wlock provides syn-
chronisation between lock releases and acquisitions of each lock.

Definition 5 (wlock-consistency). A lock-well-formed execution G = ⟨E, po,
stmp, so, hb⟩ is wlock-consistent iff:

1) stmp = stmpWL (where stmpWL is as defined above); and
2) so =

⋃
x

{
⟨⟨e1, aCW⟩, ⟨e2, aMF⟩⟩

∣∣ ⟨e1, e2⟩ ∈ (pox|imm)−1; lox
}
, where lox is a

total order on acquisition events on x, i.e. on {e ∈ Ex | m(e) = Acqwl}.

18

IWL(t, Acqwl, (x)) ≜
RFAA(ptx, xa, 1, d); Wait(d);
let v = Read(ptx) in
loop {if Readsv(x1)=v then break else

. . .
if Readsv(xT)=v then break }

IWL(t, Relwl, (x)) ≜
let v = Read(ptx) in
Writesv(xt, v + 1);
Bcastsv(xt, ,Node \ {n(t)})

Fig. 10: The wlock implementation using rdmawait
rmw and sv libraries.

Given a release event e1 on x (in a lock-well-formed execution), the (pox|imm)
−1

component identifies an acquire event e3 that is the latest corresponding acquire
event on x preceding e1 (in po). As such, so induces synchronisation between
e1 and all later (in lox) acquisition events e2. Note that lox is also indirectly
included in hb, since the acquire and release operations stay in order.

The release stamp (aCW) does not synchronise with previous RDMA-specific
stamps (bottom-left part of Fig. 9). As such, reacquiring a lock does not guar-
antee that previous RDMA operations submitted with the lock are completed.

The wlock (Distributed) Implementation. We present our wlock im-
plementation in Fig. 10 (via the IWL function), inspired by the well-known ticket
lock implementation. For each lock location x, we create a ticket dispenser xa

(on some arbitrary node) that records the value of the next available ticket,
thread-local locations (ptx for each t ∈ Tid = {1, . . . , T}) to track the ticket al-
located to t (i.e. its turn), and shared variables xt (for each t ∈ Tid) to signal
releasing the lock.

To release the lock on x, thread t writes the next turn, i.e. v+1 when t holds
ticket v (obtained by reading ptx), to its release location xt and subsequently
broadcasts it to all nodes other than itself (n(t)). To acquire the lock on x,
thread t calls a fetch-and-add on xa to fetch the next available ticket (i.e. its
turn) in ptx and increments xa. It then records its turn in v and repeatedly
examines the release location xt′ of each thread t′ ∈ {1, . . . , T} until one has
value v, indicating that its turn has come and thus t holds the lock. Note that
t′ may be t itself, i.e. t = t′, if it was the last thread to release the lock.

At the cost of more network messages (through broadcasts), our implementa-
tion provides lower latency than centralised systems (e.g. in Fig. 13) as messages
are transmitted directly from the thread releasing the lock to the next thread ac-
quiring the lock. We next prove (Theorem 1) that our implementation is correct
against the wlock specification with the full proof given in §B.2.

Theorem 1. The implementation IWL is sound.

4.3 The Strong Lock Library

We present our strong lock library slock that, as well as ensuring mutual exclu-
sion of critical sections, additionally guarantees that all earlier operations have
fully completed on releasing a strong lock. We present several examples of the

19

x, y = 0, 0

Acqwl(l)
x := 1
y := 1
Relwl(l)

Acqwl(l)
a := x1

b := y1

Relwl(l)

(a) a ̸= b ✓

x, y = 0, 0

Acqwl(l)
x := 1
y := 1
Relwl(l)

Acqwl(l)

a :=d x1

b :=d y1

Wait(d)
Relwl(l)

(b) a ̸= b ✗

x, y = 0, 0

Acqsl(l)
x := 1
y := 1
Relsl(l)

Acqsl(l)
a := x1

b := y1

Relsl(l)

(c) a ̸= b ✗

Fig. 11: Weak versus strong locks when interacting with Get instructions.

‘message-passing’ behaviour in Fig. 11 contrasting the behaviour of weak and
strong locks when interacting with Gets and whether the weak outcome a ̸= b is
allowed. In particular, we may observe a ̸= b when using a weak lock (Fig. 11a)
and this can be prohibited by explicitly waiting (using Wait(d)) on the comple-
tion of the Gets before releasing the weak lock (Fig. 11b). By contrast, when
using a strong lock we no longer need to wait for their completion as this is
guaranteed by the strong lock release (Fig. 11c).

The slock Specification. The slock stamps are defined (via stmpSL) as:

stmpSL(⟨t, , ⟨Acqsl,(x),()⟩⟩)≜{aMF} stmpSL(⟨t, , ⟨Relsl,(x),()⟩⟩)≜
⋃

n∈Node

{aGFn}

As with wlock, acquiring a strong lock behaves as a memory fence (aMF),
while releasing it behaves as a global fence (aGF), ensuring that all previous
remote operations are completed.

Definition 6 (slock-consistency). A lock-well-formed execution G = ⟨E, po,
stmp, so, hb⟩ is slock-consistent iff:

1) stmp = stmpSL (where stmpSL is defined above); and
2) so =

⋃
x∈Loc,n∈Node

{
⟨⟨e1, aGFn⟩, ⟨e2, aMF⟩⟩

∣∣ ⟨e1, e2⟩ ∈ (pox|imm)−1; lox
}
, where

lox is a total order on {e ∈ Ex | m(e) = Acqsl}.

Strong Lock Implementation. We implement slock (via ISL) simply by
combining the weak locks and global fences (from the sv library) as follows:

ISL(t, Acqsl, (x)) ≜ Acqwl(x) ISL(t, Relsl, (x)) ≜ GFence(Node); Relwl(x)

Finally, we prove (Theorem 2) that our implementation is sound against the
slock specification with the full proof given in §B.3.

Theorem 2. The implementation ISL is sound.

4.4 The Node Lock Library

A common use case of locks is to protect an object (set of locations) on a specific
node. In such cases, neither weak nor strong locks are suitable as they either incur
a high programmer burden (weak locks) or a high performance overhead (strong

20

x = 0 y = 0

Acqsl(l)
x2 := 1
Relsl(l)
y3 := 1

a := y
b := x2

(a) (a, b) = (1, 0) ✗

x = 0 y = 0

nlock l

Acqnl(l
2)

x2 := 1
Relnl(l

2)
y3 := 1

a := y
b := x2

(b) (a, b) = (1, 0) ✓

x = 0 y = 0 z = 0

nlock l

Acqnl(l
2)

x2 := 1
z4 := 1
Relnl(l

2)
y3 := 1

a := y
Acqnl(l

2)
b := x2

c := z4

Relnl(l
2)

(c) (a, b, c)=(1, 0,) ✗

(a, b, c)=(1, , 0) ✓

Fig. 12: Strong (left) versus node (middle and right) locks examples.

locks). To address this, we develop node locks, nlock, a novel lock library that
provides synchronisation on a specific node. Given a node lock x on node n,
we write n(x) for n. A node lock x ensures that on re-acquiring it all previous
remote operations (within a critical section of x) towards n are observable.

The nlock Specification. The nlock stamps are defined (via stmpNL) as:

stmpNL(⟨t, , ⟨Acqnl,(x),()⟩⟩)≜{aMF} stmpNL(⟨t, , ⟨Relnl,(x),()⟩⟩)≜
{
aRFn(x), aNRWn(x)

}
Note that unlike wlock, the nlock releases use aRFn and aNRWn stamps to
synchronise with previous remote operations towards n (i.e. those with stamps
aNARn, aNRRn, and aNRWn). Importantly, note that unlike in slock, the release
should not include a global fence stamp (aGFn) as that would be too strong.
By using aRFn and aNRWn, we ensure that previous operations towards n are
completed only when the lock is later re-acquired, and they may not have yet
completed on release. This means that, when appropriate, using a node lock is
more efficient than combining a weak lock with a global fence.

To understand the difference between strong and node locks, consider the
examples in Figs. 12a and 12b, where the x2 := 1 Put by node 1 is enclosed
within a lock, while the b := x2 Get by node 3 is without a lock. In Fig. 12a,
Relsl(l) ensures that the earlier x2 := 1 has completed. As such, a = 1 implies
that y3 := 1 has been executed and that x (in node 2) has been modified,
ensuring b = 1. By contrast, the Relnl(l

2) in Fig. 12b does not wait for x2 := 1
to complete, i.e. x2 := 1 may complete after y3 := 1. We can prevent this by
enclosing b := x2 within the node lock, as shown in Fig. 12c. Specifically, y3 := 1
in Fig. 12c may still complete before earlier remote operations. However, a = 1
implies that y3 := 1 is executed, and that thread 1 has at least acquired the
lock. As such, when thread 3 acquires the lock via Acqnl(l), it synchronises with
Relnl(l) in thread 1 and ensures that x2 := 1 is completed on lock acquisition.

Note that the node lock l protects the accesses towards locations on node 2
only. Thus, in Fig. 12c, it only guarantees that x2 := 1 is completed but not
necessarily z4 := 1 (towards node 4), and thus (a, c)=(1, 0) is an allowed out-
come. By contrast, Fig. 8f in the overview showcases the lock guarantees: as x
and y both reside on node 2, the lock ensures that their accesses by threads 1
and 3 are mutually exclusive, i.e. a ̸= b is disallowed. Specifically, if thread 1
acquires l first, x and y are modified before being read by thread 3, i.e. a=b=1.

21

Conversely, if thread 3 acquires l first, x and y are read before being modified
by thread 1, i.e. a=b=0.

Definition 7 (nlock-consistency). A lock-well-formed execution G = ⟨E, po,
stmp, so, hb⟩ is nlock-consistent iff:

1) stmp = stmpNL (where stmpNL is as defined above); and
2) so =

{
⟨⟨e, aRFn(loc(e))⟩, ⟨e, aNRWn(loc(e))⟩⟩

∣∣ m(e) = Relnl
}⋃

x∈Loc

{
⟨⟨e1, aNRWn(loc(e1))⟩, ⟨e2, aMF⟩⟩

∣∣ ⟨e1, e2⟩ ∈ (pox|imm)−1; lox
}

where lox is a total order on {e ∈ Ex | m(e) = Acqnl}.

INL(t, Acqnl, (x)) ≜

RFAA(ptx, xa, 1, d); Wait(d);

let v = Read(ptx) in

loop {
Get(ptx, xr, d); Wait(d);

if Read(ptx) = v then break };
Write(ptx, v + 1)

INL(t, Relnl, (x)) ≜
Rfence(n(x));

Put(xr, p
t
x,)

Fig. 13: Node lock implementation
(INL) using rdmawait

rmw

The nlock Implementation. We im-
plement nlock as a centralised ticket lock
using remote RMWs. For each (node) lock
x associated with node n(x), we create two
remote locations xa and xr on n(x). As be-
fore, xa is the ticket dispenser and records
the next available ticket. The xr tracks the
release counter and indicates which ticket
currently holds the lock. Each thread also
uses a local location ptx to hold the result
of remote operations.

Acquiring the lock on x calls a fetch-
and-add on xa to fetch the next available
ticket in ptx and increments xa. It then
records the ticket value in v and repeatedly examines xr until it has value v,
indicating that its turn has come and thus t holds the lock. Finally, it increments
its ticket value in ptx in preparation for later releasing the lock; i.e. ptx now records
the ticket whose turn is next. As such, releasing the lock simply updates xr to
ptx using a Put rather than an RMW; this is because only the lock holder can
write to xr. Note that the preceding Rfence ensures that earlier Get operations
towards n(x) have completed before the lock is release. We prove (Theorem 3)
that our implementation is correct against the nlock specification with the full
proof given in §B.4.

Theorem 3. The implementation INL is sound.

5 The rdmasc
rmw Library

We specify (§5.1), implement, and verify (§5.2) the rdmasc
rmw library that pro-

vides intuitive read, write, and RMW operations with the strong semantics of
sequential consistency (SC) [23]. That is, as with SC, the instructions in each
thread under rdmasc

rmw are always observed in (program) order. Moreover, un-
like in rdmawait

rmw or the lock libraries in §4, the users do not need to specify
whether a location is local or remote and which node it resides on. For instance,
a user can simply call Writesc(x, v) to write (with SC semantics) to location x,

22

regardless of whether x is local (on the current node) or remote. As such, we
use the typewriter font and write x to denote an abstract rdmasc

rmw location
whose underlying memory address may be local (i.e. x=x) or on a remote node
n (i.e. x=xn).

5.1 The rdmasc
rmw Specification

The rdmasc
rmw Methods. The rdmasc

rmw library has four methods: Readsc(x),
to read from x; Writesc(x, v) to write v to x; CASsc(x, v1, v2), a compare-and-
swap on x; and FAAsc(x, v), a fetch-and-add on x. We define loc as expected, i.e.
loc(Writesc(x, v)) = loc(Readsc(x)) = loc(CASsc(x, v1, v2)) = loc(FAAsc(x, v))
={x}. We extend po and loc to subevents as expected.

Well-formedness. Given an rdmasc
rmw execution G, we define the sets of read

subevents (R) to comprise all subevents except writes and the set of write
subevents (W) to include all subevents except reads and failed RMWs.

R≜{⟨e, aMF⟩ | e ∈ G.E \{⟨ , , ⟨Writesc, , ⟩⟩}}
W≜{⟨e, aMF⟩ | e ∈ G.E \ {⟨ , , ⟨Readsc, , ⟩⟩} \{⟨ , , ⟨CASsc, (, v,), v′⟩⟩ | v ̸=v′}}

As before, a tuple ⟨vR, vW, rf,mo⟩ is well-formed if the following holds:

• vR/vW map each read/write subevent to the value read/written:

vR(⟨⟨ , , ⟨ , , v⟩⟩, ⟩)≜v vW(⟨⟨ , , ⟨CASsc, (, v1, v2), v1⟩⟩, ⟩)≜v2

vW(⟨⟨ , , ⟨Writesc, (, v), ⟩⟩, ⟩)≜v vW(⟨⟨ , , ⟨FAAsc, (, v), v′⟩⟩, ⟩)≜v+v′

• rf and mo satisfy the same constraints as well-formedness of rdmawait
rmw (§3.2).

We next define rdmasc
rmw-consistency, which requires that 1) each event be

associated with (single) stamp aMF; and 2) so = po ∪ rf ∪ mo ∪ rb. The former
ensures that rdmasc

rmw calls remain ordered with respect to other non-RDMA
operations. The latter captures the standard notion of happens-before in SC [27].

Definition 8 (rdmasc
rmw-consistency). Execution G is rdmasc

rmw-consistent if:

1) ∀e ∈ E. stmp(e) = {aMF}, and
2) there exists a well-formed ⟨vR, vW, rf,mo⟩ such that G.so = G.po∪ rf ∪mo∪ rb,

where rb is defined as in §3.2.

5.2 The rdmasc
rmw Implementation

We implement rdmasc
rmw using node locks and rdmawait

rmw operations, as shown
in Fig. 14. For each rdmasc

rmw location x, we create an rdmawait
rmw location x on

some arbitrary node. We assume each thread t has access to a private location
rt for recording the remote data it reads, and a private location ptx for recording

23

ISC(t, Writesc, (x, v)) ≜
Acqnl(lx);

Write(ptx, v);

Put(x, ptx,);

Relnl(lx)

ISC(t, Readsc, (x)) ≜
Acqnl(lx);

Get(rt, x, d);

Relnl(lx);

Wait(d);

Read(rt)

ISC(t, CASsc, (x, v1, v2)) ≜
Acqnl(lx);

RCAS(rt, x, v1, v2, d);

Relnl(lx);

Wait(d);

Read(rt)

ISC(t, FAAsc, (x, v)) ≜
Acqnl(lx);

RFAA(rt, x, v, d);

Relnl(lx);

Wait(d);

Read(rt)

Fig. 14: The implementation of rdmasc
rmw (through the ISC function)

x, y = 0, 0

Writesc(x, 1)
Writesc(y, 1)

a := Readsc(y)
b := Readsc(x)

(a) (a, b) = (1, 0) ✗

x, y = 0, 0

Writesc(x, 1)
a := Readsc(y)

Writesc(y, 1)
b := Readsc(x)

(b) (a, b) = (0, 0) ✗

x = 0

CASsc(x, 0, 2) Writesc(x, 1)

(c) x = 2 ✗

x = 0

z = 0

z2 := 1
Writesc(x, 1)

a := Readsc(x)
b := z

(d) (a, b) = (1, 0) ✓

x = 0

z = 0

Writesc(x, 1)
z := 1

a := z1

b := Readsc(x)

(e) (a, b) = (1, 0) ✓

Fig. 15: rdmasc
rmw examples

the value to be put to a remote location (i.e. the second argument of a Put)3.
Moreover, each location x is associated with a node lock lx hosted on the same
node as x. We implement rdmasc

rmw writes, reads, and RMWs respectively using
Put, Get, and remote RMWs of rdmawait

rmw while holding the lx lock.
Note that the Writesc(x, v) implementation does not wait for Put(x, ptx,) to

complete. As such, when running Writesc(x, 1); Writesc(y, 1) in Fig. 15a with
n(x) ̸= n(y), location y may be modified before x. However, this out-of-order
completion is not observable, i.e. the (non-SC) outcome (a, b)=(1, 0) is disallowed,
because re-acquiring a node lock makes all previous operations towards its node
visible (see §4.4). Specifically, a=1 implies that Put(x, ptx,) has been issued. As
the implementation of Readsc(x) acquires lx, this enforces Put(x, p

t
x,) to become

visible; i.e. Readsc(x) reads 1 and (a, b)=(1, 0) is disallowed.
In contrast to Writesc(x, v), the implementations of the other three opera-

tions must wait (via Wait(d)) for their remote operations to complete prior to
reading the result via Read(rt) to ensure they observe the correct value. For
instance, were we to remove Wait(d) in the implementation of Readsc(x), the
Read(rt) could read a stale value from rt before Get(rt, x, d) completes and up-
dates rt. Nevertheless, it is sufficient to wait for the remote operation to complete
after releasing the lock. That is, it is possible for another thread to acquire lx
(and modify x) before Get(rt, x, d) completes; however, the semantics of nlock
ensures that Get(rt, x, d) reads the old value into rt.

The rdmasc
rmw library, when used in isolation (without calls to e.g. rdmawait

rmw),
ensures SC behaviour. As such, the weak behaviours of ‘message-passing’ in

3 In practice, we can use a Put with ‘inlined data’ and forgo temporary location ptx.

24

Fig. 15a and ‘store-buffering’ in Fig. 15b are disallowed. Moreover, rdmasc
rmw

RMW operations are strongly isolated with rdmasc
rmw reads and writes; e.g.

outcome x=2 is disallowed in Fig. 15c. This is in contrast to remote RMWs
of rdmawait

rmw , where outcome x=2 is allowed in Fig. 6b. However, rdmasc
rmw

operations does not ensure that earlier remote operations by other libraries are
completed, and thus outcome (a, b)=(1, 0) is allowed in both Figs. 15d and 15e.

More generally, we can use this strategy to linearise [19] accesses to any
sequential data structure D by wrapping each call to D inside a node lock.
This allows us to port existing sequential data structures to RDMA settings
with minimal effort. Finally, we prove (Theorem 4) that our implementation is
correct against the rdmasc

rmw specification with the full proof given in §B.5.
Theorem 4. The implementation ISC is sound.

6 Related Work

RDMA Semantics. The coreRMAmodel [13] is an early attempt at formalising
remote memory accesses, but this semantics does not match the RDMA tech-
nical specification. This gap is addressed by rdmatso [3], which formalises the
actual RDMA semantics over TSO, but the formalisation did not cover remote
RMWs. A later model, rdmasc [5], explored the semantics from rdmatso [3] but
over an SC CPU alongside programming strategies to efficiently prevent weak
behaviours. rdmasc is unrelated to our work, including rdmasc

rmw.

RDMA-Based Distributed Systems. Besides loco [4, 20], prior work has
covered a range of distributed systems, e.g. consensus protocols [1], databases [2,
24], stand-alone data structures [9, 14]. However, unlike loco (and our work),
these are bespoke systems rather than a programming methodology or library.

Verification. Our proofs for the soundness of library implementations have
followed the declarative style [4, 27, 31]. For rdmatso

rmw (like rdmatso), we also
provide an operational model (§D) which could ultimately form a basis for a
program logic (e.g., [7, 22]), ultimately enabling operational abstractions and
proofs of refinement [12,30]. We consider such extensions to be future work.

RDMA Locks. There are several implementations of network locks using RDMA
operations, including centralised lock managers [11], decentralised algorithms [33],
asymmetric implementations to favour local accesses [6], and technology-agnostic
designs that are more general than RDMA [15]. Other stated objectives of these
implementations can include fairness, starvation freedom, low latency, load bal-
ancing, scalability, contention mitigation, fault tolerance [18], etc.

However, none of these existing implementations have been formally verified
(since rdmatso

rmw is the first formal semantics of remote RMWs). These works,
at most, have offered intuitive explanations to support the correctness of their
approach. Moreover, these implementations lack an explicit description of the
interaction guarantees between locks and other RDMA operations, which as we
have seen can be subtle. In most cases, programmers are made responsible to
ensure relevant operations are completed before releasing the lock, thus aligning
with the weak lock semantics that we have presented.

25

References

1. Aguilera, M.K., Ben-David, N., Guerraoui, R., Marathe, V.J., Xygkis, A.,
Zablotchi, I.: Microsecond consensus for microsecond applications. In: 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
20). pp. 599–616. USENIX Association (Nov 2020), https://www.usenix.org/

conference/osdi20/presentation/aguilera

2. Alquraan, A., Udayashankar, S., Marathe, V., Wong, B., Al-Kiswany, S.: Lolkv:
the logless, line the logless, linearizable, rdma-based key-value storage system ariz-
able, rdma-based key-value storage system. In: Proceedings of the 21st USENIX
Symposium on Networked Systems Design and Implementation. NSDI’24, USENIX
Association, USA (2024)

3. Ambal, G., Dongol, B., Eran, H., Klimis, V., Lahav, O., Raad, A.: Semantics of
remote direct memory access: Operational and declarative models of RDMA on
TSO architectures. Proc. ACM Program. Lang. 8(OOPSLA2), 1982–2009 (2024).
https://doi.org/10.1145/3689781, https://doi.org/10.1145/3689781

4. Ambal, G., Hodgkins, G., Madler, M., Chockler, G., Dongol, B., Izraelevitz, J.,
Raad, A., Vafeiadis, V.: A verified high-performance composable object library for
remote direct memory access (extended version) (2025), https://arxiv.org/abs/
2510.10531

5. Ambal, G., Lahav, O., Raad, A.: Sufficient conditions for robustness of RDMA
programs. In: Vafeiadis, V. (ed.) Programming Languages and Systems - 34th
European Symposium on Programming, ESOP 2025, Held as Part of the Inter-
national Joint Conferences on Theory and Practice of Software, ETAPS 2025,
Hamilton, ON, Canada, May 3-8, 2025, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 15694, pp. 56–87. Springer (2025). https://doi.org/10.
1007/978-3-031-91118-7_3, https://doi.org/10.1007/978-3-031-91118-7_3

6. Baran, A., Nelson-Slivon, J., Tseng, L., Palmieri, R.: Alock: Asymmetric lock prim-
itive for rdma systems. In: Proceedings of the 36th ACM Symposium on Parallelism
in Algorithms and Architectures. p. 15–26. SPAA ’24, Association for Comput-
ing Machinery, New York, NY, USA (2024). https://doi.org/10.1145/3626183.
3659977, https://doi.org/10.1145/3626183.3659977

7. Bila, E.V., Dongol, B., Lahav, O., Raad, A., Wickerson, J.: View-based owicki–
gries reasoning for persistent x86-tso. In: Sergey, I. (ed.) Programming Languages
and Systems. pp. 234–261. Springer International Publishing, Cham (2022)

8. Blundell, C., Lewis, E.C., Martin, M.M.: Subtleties of transactional memory
atomicity semantics. IEEE Computer Architecture Letters 5(2), 17–17 (2006).
https://doi.org/10.1109/L-CA.2006.18

9. Brock, B., Buluç, A., Yelick, K.: Bcl: A cross-platform distributed data struc-
tures library. In: Proceedings of the 48th International Conference on Parallel
Processing. ICPP ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3337821.3337912, https://doi.org/10.
1145/3337821.3337912

10. Chong, N., Sorensen, T., Wickerson, J.: The semantics of transactions and weak
memory in x86, power, arm, and C++. In: Foster, J.S., Grossman, D. (eds.)
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018. pp. 211–225. ACM (2018). https://doi.org/10.1145/3192366.3192373,
https://doi.org/10.1145/3192366.3192373

26

https://www.usenix.org/conference/osdi20/presentation/aguilera
https://www.usenix.org/conference/osdi20/presentation/aguilera
https://doi.org/10.1145/3689781
https://doi.org/10.1145/3689781
https://doi.org/10.1145/3689781
https://arxiv.org/abs/2510.10531
https://arxiv.org/abs/2510.10531
https://doi.org/10.1007/978-3-031-91118-7_3
https://doi.org/10.1007/978-3-031-91118-7_3
https://doi.org/10.1007/978-3-031-91118-7_3
https://doi.org/10.1007/978-3-031-91118-7_3
https://doi.org/10.1007/978-3-031-91118-7_3
https://doi.org/10.1145/3626183.3659977
https://doi.org/10.1145/3626183.3659977
https://doi.org/10.1145/3626183.3659977
https://doi.org/10.1145/3626183.3659977
https://doi.org/10.1145/3626183.3659977
https://doi.org/10.1109/L-CA.2006.18
https://doi.org/10.1109/L-CA.2006.18
https://doi.org/10.1145/3337821.3337912
https://doi.org/10.1145/3337821.3337912
https://doi.org/10.1145/3337821.3337912
https://doi.org/10.1145/3337821.3337912
https://doi.org/10.1145/3192366.3192373
https://doi.org/10.1145/3192366.3192373
https://doi.org/10.1145/3192366.3192373

11. Chung, Y., Zamanian, E.: Using RDMA for lock management. CoRR
abs/1507.03274 (2015), http://arxiv.org/abs/1507.03274

12. Dalvandi, S., Dongol, B.: Implementing and verifying release-acquire transactional
memory in C11. Proc. ACM Program. Lang. 6(OOPSLA2), 1817–1844 (2022).
https://doi.org/10.1145/3563352, https://doi.org/10.1145/3563352

13. Dan, A.M., Lam, P., Hoefler, T., Vechev, M.: Modeling and analysis of
remote memory access programming. SIGPLAN Not. 51(10), 129–144 (oct
2016). https://doi.org/10.1145/3022671.2984033, https://doi.org/10.1145/
3022671.2984033

14. Devarajan, H., Kougkas, A., Bateman, K., Sun, X.H.: Hcl: Distributing paral-
lel data structures in extreme scales. In: 2020 IEEE International Conference on
Cluster Computing (CLUSTER). pp. 248–258 (2020). https://doi.org/10.1109/
CLUSTER49012.2020.00035

15. Devulapalli, A., Wyckoff, P.: Distributed queue-based locking using advanced
network features. In: 34th International Conference on Parallel Processing
(ICPP 2005), 14-17 June 2005, Oslo, Norway. pp. 408–415. IEEE Computer
Society (2005). https://doi.org/10.1109/ICPP.2005.34, https://doi.org/10.
1109/ICPP.2005.34

16. Dongol, B., Jagadeesan, R., Riely, J.: Transactions in relaxed memory architec-
tures. Proc. ACM Program. Lang. 2(POPL), 18:1–18:29 (2018). https://doi.

org/10.1145/3158106, https://doi.org/10.1145/3158106
17. Gangidi, A., Miao, R., Zheng, S., Bondu, S.J., Goes, G., Morsy, H., Puri, R., Rif-

tadi, M., Shetty, A.J., Yang, J., et al.: Rdma over ethernet for distributed training
at meta scale. In: Proceedings of the ACM SIGCOMM 2024 Conference. pp. 57–70
(2024)

18. Gao, J., Wang, Q., Shu, J.: Shiftlock: Mitigate one-sided RDMA lock contention
via handover. In: Gunawi, H.S., Tarasov, V. (eds.) 23rd USENIX Conference on
File and Storage Technologies, FAST 2025, Santa Clara, CA, February 25-27, 2025.
pp. 355–372. USENIX Association (2025), https://www.usenix.org/conference/
fast25/presentation/gao

19. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.
org/10.1145/78969.78972, https://doi.org/10.1145/78969.78972

20. Hodgkins, G., Madler, M., Izraelevitz, J.: Loco: Rethinking objects for network
memory (2025), https://arxiv.org/abs/2503.19270

21. IBTA: Infiniband architecture specification volume 1 release 1.6. https://www.
infinibandta.org/ibta-specification/ (2022)

22. Lahav, O., Dongol, B., Wehrheim, H.: Rely-guarantee reasoning for causally con-
sistent shared memory. In: Enea, C., Lal, A. (eds.) Computer Aided Verifica-
tion - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 13964, pp. 206–
229. Springer (2023). https://doi.org/10.1007/978-3-031-37706-8_11, https:
//doi.org/10.1007/978-3-031-37706-8_11

23. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (Sep 1979).
https://doi.org/10.1109/TC.1979.1675439, http://dx.doi.org/10.1109/TC.

1979.1675439

24. Li, P., Hua, Y., Zuo, P., Chen, Z., Sheng, J.: ROLEX: A scalable RDMA-oriented
learned Key-Value store for disaggregated memory systems. In: 21st USENIX Con-
ference on File and Storage Technologies (FAST 23). pp. 99–114. USENIX Associa-

27

http://arxiv.org/abs/1507.03274
https://doi.org/10.1145/3563352
https://doi.org/10.1145/3563352
https://doi.org/10.1145/3563352
https://doi.org/10.1145/3022671.2984033
https://doi.org/10.1145/3022671.2984033
https://doi.org/10.1145/3022671.2984033
https://doi.org/10.1145/3022671.2984033
https://doi.org/10.1109/CLUSTER49012.2020.00035
https://doi.org/10.1109/CLUSTER49012.2020.00035
https://doi.org/10.1109/CLUSTER49012.2020.00035
https://doi.org/10.1109/CLUSTER49012.2020.00035
https://doi.org/10.1109/ICPP.2005.34
https://doi.org/10.1109/ICPP.2005.34
https://doi.org/10.1109/ICPP.2005.34
https://doi.org/10.1109/ICPP.2005.34
https://doi.org/10.1145/3158106
https://doi.org/10.1145/3158106
https://doi.org/10.1145/3158106
https://doi.org/10.1145/3158106
https://doi.org/10.1145/3158106
https://www.usenix.org/conference/fast25/presentation/gao
https://www.usenix.org/conference/fast25/presentation/gao
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://arxiv.org/abs/2503.19270
https://www.infinibandta.org/ibta-specification/
https://www.infinibandta.org/ibta-specification/
https://doi.org/10.1007/978-3-031-37706-8_11
https://doi.org/10.1007/978-3-031-37706-8_11
https://doi.org/10.1007/978-3-031-37706-8_11
https://doi.org/10.1007/978-3-031-37706-8_11
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439

tion, Santa Clara, CA (Feb 2023), https://www.usenix.org/conference/fast23/
presentation/li-pengfei

25. Lu, Y., Chen, G., Li, B., Tan, K., Xiong, Y., Cheng, P., Zhang, J., Chen, E., Mosci-
broda, T.: {Multi-Path} transport for {RDMA} in datacenters. In: 15th USENIX
symposium on networked systems design and implementation (NSDI 18). pp. 357–
371 (2018)

26. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-tso. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,
August 17-20, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5674,
pp. 391–407. Springer (2009). https://doi.org/10.1007/978-3-642-03359-9_

27, https://doi.org/10.1007/978-3-642-03359-9_27
27. Raad, A., Doko, M., Rozic, L., Lahav, O., Vafeiadis, V.: On library correctness un-

der weak memory consistency: specifying and verifying concurrent libraries under
declarative consistency models. Proc. ACM Program. Lang. 3(POPL), 68:1–68:31
(2019). https://doi.org/10.1145/3290381, https://doi.org/10.1145/3290381

28. Raad, A., Lahav, O., Vafeiadis, V.: On parallel snapshot isolation and re-
lease/acquire consistency. In: Ahmed, A. (ed.) Programming Languages and Sys-
tems. pp. 940–967. Springer International Publishing, Cham (2018)

29. Raad, A., Lahav, O., Vafeiadis, V.: On the semantics of snapshot isolation. In:
Enea, C., Piskac, R. (eds.) Verification, Model Checking, and Abstract Interpreta-
tion. pp. 1–23. Springer International Publishing, Cham (2019)

30. Singh, A.K., Lahav, O.: An operational approach to library abstraction under
relaxed memory concurrency. Proc. ACM Program. Lang. 7(POPL), 1542–1572
(2023). https://doi.org/10.1145/3571246, https://doi.org/10.1145/3571246

31. Stefanesco, L., Raad, A., Vafeiadis, V.: Specifying and verifying persistent li-
braries. In: Weirich, S. (ed.) Programming Languages and Systems - 33rd Eu-
ropean Symposium on Programming, ESOP 2024, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg
City, Luxembourg, April 6-11, 2024, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 14577, pp. 185–211. Springer (2024). https://doi.org/10.

1007/978-3-031-57267-8_8, https://doi.org/10.1007/978-3-031-57267-8_8
32. Wang, Z., Luo, L., Ning, Q., Zeng, C., Li, W., Wan, X., Xie, P., Feng, T., Cheng, K.,

Geng, X., et al.: {SRNIC}: A scalable architecture for {RDMA}{NICs}. In: 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
23). pp. 1–14 (2023)

33. Yoon, D.Y., Chowdhury, M., Mozafari, B.: Distributed lock management with
RDMA: decentralization without starvation. In: Das, G., Jermaine, C.M., Bern-
stein, P.A. (eds.) Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018. pp. 1571–1586. ACM (2018). https://doi.org/10.1145/3183713.3196890,
https://doi.org/10.1145/3183713.3196890

34. Zhu, Y., Eran, H., Firestone, D., Guo, C., Lipshteyn, M., Liron, Y., Padhye, J.,
Raindel, S., Yahia, M.H., Zhang, M.: Congestion control for large-scale rdma de-
ployments. ACM SIGCOMM Computer Communication Review 45(4), 523–536
(2015)

28

https://www.usenix.org/conference/fast23/presentation/li-pengfei
https://www.usenix.org/conference/fast23/presentation/li-pengfei
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3571246
https://doi.org/10.1145/3571246
https://doi.org/10.1145/3571246
https://doi.org/10.1007/978-3-031-57267-8_8
https://doi.org/10.1007/978-3-031-57267-8_8
https://doi.org/10.1007/978-3-031-57267-8_8
https://doi.org/10.1007/978-3-031-57267-8_8
https://doi.org/10.1007/978-3-031-57267-8_8
https://doi.org/10.1145/3183713.3196890
https://doi.org/10.1145/3183713.3196890
https://doi.org/10.1145/3183713.3196890

A sv Library Semantics

As per other RDMA libraries, we assume a set of nodes, Node, of fixed size.
Each thread t is associated to a node n(t). The sv library uses the following 5
methods:

m(ṽ) ::= Writesv(x, v) | Readsv(x) | Bcastsv(x, d, {n1, . . . , nk})
| Waitsv(d) | GFence({n1, . . . , nk})

• Writesv : Loc× Val → ()
• Readsv : Loc → Val

• Waitsv : Wid → ()
• GFence : P(Node) → ()

Writesv(x, v) writes a new value v to the location x of the current node.
Readsv(x) reads the location x of the current node and returns its value.
Bcastsv(x, d, {n1, . . . , nk}) broadcasts the local value of x and overwrites the
values of the copies of x on the nodes {n1, . . . , nk}, which might include the local
node. Waitsv(d) waits for previous broadcasts of the thread marked with the same
work identifier d ∈ Wid. As is the case for Put, this operation only guarantees
that the local values of the broadcasts have been read, but not that remote copies
have been modified. Finally, the global fence operation GFence({n1, . . . , nk}) en-
sures every previous operation of the thread towards one of the nodes in the
argument is fully finished, including the writing part of broadcasts.

We then require the stamping function stmpSV:

stmpSV(⟨ , , ⟨Writesv, , ⟩⟩) = {aCW}
stmpSV(⟨ , , ⟨Readsv, , ⟩⟩) = {aCR}
stmpSV(⟨ , , ⟨Waitsv, , ⟩⟩) = {aWT}

stmpSV(⟨ , , ⟨GFence, ({n1, . . . , nk}), ⟩⟩) = {aGFn1
, . . . , aGFnk

}
stmpSV(⟨ , , ⟨Bcastsv, (, , {n1, . . . , nk}), ⟩⟩) = {aNLRn1

, aNRWn1
, . . . , aNLRnk

, aNRWnk
}

Broadcasts are associated with a NIC local read and NIC remote write stamp
for each remote node they are broadcasting towards. Similarly, global fence op-
erations are associated with a global fence stamp for each node.

With this, the stamp order is enough to enforce the behaviour of the global
fence. If we have a program Bcastsv(x, d, {. . . , n, . . .}); GFence({. . . , n, . . .}), the
plain execution has two events eBR and eGF, and the definitions of stmpSV and sto

(cell G12 in Fig. 9) imply ⟨eBR, aNRWn⟩
ppo−−→ ⟨eGF, aGFn⟩.

Recall that, for an execution G, G.W represents write subevents (stamps aCW,
aCAS, aNLW, and aNRW), while G.R represents read subevents (stamps aCR, aCAS,
aNLR, aNAR, and aNRR). Recall also that we note e.g. G.Wx ≜ {s ∈ G.W | loc(s) = {x}}
to constrain a set to subevents on a specific location x. For the sv library, we
additionally define G.Wn ≜ {⟨e, aCW⟩ | n(t(e)) = n}∪G.aNRWn as the set of write
subevents occurring on node n. This includes CPU writes on the node, as well as
broadcast writes towards n from all threads. We also note G.Wn

x ≜ G.Wx∩G.Wn

29

as expected. Similarly, G.Rn ≜ {s | s ∈ G.R∧ n(t(s)) = n} covers reads occur-
ring on n, either by a CPU read or as part of a broadcast. We now work towards
a definition of consistency for shared variables.

Definition 9. For an execution G = ⟨E, po, stmpSV, , ⟩, we define the following:

• The value-read function vR : G.R → Val that associates each read subevent with
the value returned, if available, i.e. if e = ⟨ , , ⟨Readsv, , v⟩⟩, then vR(e) = v.

• The value-written function vW : G.W → Val that associates each write subevent
with a value G, i.e. if e = ⟨ , , ⟨Writesv, (, v), ⟩⟩, then vW(e) = v.

• A reads-from relation, rf ≜
⋃

n rf
n, where each rfn ⊆ G.Wn × G.Rn is a

relation on subevents of the same location and node with matching values, i.e.
if ⟨s1, s2⟩ ∈ rfn then loc(s1) = loc(s2) and vW(s1) = vR(s2).

• A modification-order relation mo ≜
⋃

x,n monx describing the order in which
writes on x on node n reach memory.

We define well-formedness for rf and mo as follows. For each remote, a broad-
cast writes the corresponding read value: if s1 = ⟨e, aNLRn⟩ ∈ G.SEvent and
s2 = ⟨e, aNRWn⟩ ∈ G.SEvent, then vR(s1) = vW(s2). Each rfn is functional on its
range, i.e. every read in G.Rn is related to at most one write in G.Wn. If a read
is not related to a write, it reads the initial value of zero, i.e. if s2 ∈ G.Rn and
s2 ̸∈ img(rfn) then vR(s2) = 0. Finally, each monx is a strict total order on G.Wn

x .
We further define the reads-from-internal relation as rf i ≜ [aCW]; (po∩rf); [aCR]

(which corresponds to CPU reads and writes using the same TSO store buffer),
and the reads-from-external relation as rfe ≜ rf\rf i. Moreover, given an execution
G and well-formed rf and mo, we derive additional relations.

rbn ≜

{
⟨r, w⟩ ∈ G.Rn × G.Wn

∣∣∣∣ loc(r) = loc(w) ∧(
⟨r, w⟩ ∈ ((rfn)−1;mon) ∨ r ̸∈ img(rfn)

)}
pf ≜ {⟨⟨e1, aNLRn⟩, ⟨e2, aWT⟩⟩ | ∃d. ⟨e1, e2⟩ ∈ po|d} rb ≜

⋃
n

rbn

iso ≜ {⟨⟨e, aNLRn⟩, ⟨e, aNRWn⟩⟩ | e = ⟨ , , ⟨Bcastsv, (, , {. . . , n, . . .}), ⟩⟩ ∈ E}

The polls-from relation pf states that a Waitsv operation synchronises with
the NIC local read subevents of previous broadcasts that use the same work
identifier. The reads-before relation rb states that a read r executes before a
specific write w on the same node and location. This is either because r reads
the initial value of 0, or because r reads from a write that is mo-before w. Finally,
the internal-synchronisation-order relation iso states that, within a broadcast,
for each remote node the reading part occurs before the writing part.

We can then define the consistency predicate sv.C as follows.

Definition 10 (sv-consistency). ⟨E, po, stmp, so, hb⟩ is sv-consistent if:

• stmp = stmpSV;
• there exists well-formed vR, vW, rf, and mo, such that
[aCR]; (po−1 ∩ rb); [aCW] = ∅ and so = iso ∪ rfe ∪ pf ∪ rb ∪mo.

30

It is straightforward to check that this consistency predicate satisfies mono-
tonicity and decomposability. For CPU reads and writes, we ask that rb does
not contradict the program order. E.g., a program Writesv(x, 1); Readsv(x) must
return 1 and cannot return 0, even if the semantics of TSO allows for the read
to finish before the write.

B Correctness Proofs

Correctness proofs of the mowgli framework can be found in [4]. We recall
the main definitions and results in Appendix B.1 before proving the soundness
of the weak lock (§B.2), strong lock (§B.3), node lock (§B.4), and rdmasc

rmw

libraries (§B.5).

B.1 Background: mowgli Definitions and Results

mowgli assumes a type Val of values, a type Loc ⊆ Val of locations, and a type
Method of methods. The syntax of sequential programs is given by the following
grammar:

v, vi ∈ Val m ∈ Method f ∈ Val → SeqProg k ∈ N+

SeqProg ∋ p ::= v | m(v1, . . . , vk) | let p f | loop p | breakk v

mowgli assumes top-level concurrency, i.e. there is a fixed set of threads
Tid ≜ {1, 2, . . . , T}, and a concurrent program is given by a tuple p̃ = ⟨p1, . . . , pT ⟩,
where each thread t corresponds to a program pt ∈ SeqProg.

The semantics of a program is given by an execution, which is a graph over
events. Recall that events are defined in Definition 17. The first two components
⟨E, po⟩ of an execution form a plain execution:

Definition 11. We say that ⟨E, po⟩ is a plain execution iff E ⊆ Event, po ⊆
E ×E, and po =

⋃
t∈Tid po|t where every po|t (i.e. po restricted to the events of

thread t) is a total order.

We write ∅G ≜ ⟨∅, ∅⟩ for the empty execution and {e}G ≜ ⟨{e} , ∅⟩ for the
execution with a single event e. Given two executions, G1 = ⟨E1, po1⟩ and G2 =
⟨E2, po2⟩, with disjoint sets of events (i.e. E1∩E2 = ∅), we define their sequential
composition G1;G2 and parallel composition G1∥G2 as follows:

G1;G2 ≜ ⟨E1 ∪ E2, po1 ∪ po2 ∪ (E1 × E2)⟩ G1∥G2 ≜ ⟨E1 ∪ E2, po1 ∪ po2⟩

The plain semantics of a program p executed by a thread t is given by JpKt,
which is a set of pairs of the form ⟨r,G⟩, where r is the output and G is a
plain execution. This set represents all conceivable unfoldings of the program
into method calls, even those that will be rejected by the semantics of the corre-
sponding libraries. Each output is a pair ⟨v, k⟩, where v is a value and k a break

31

number, indicating the program terminates by requesting to exit k nested loops
and returning the value v.

JvKt ≜ {⟨⟨v, 0⟩, ∅G⟩} Jbreakk vKt ≜ {⟨⟨v, k⟩, ∅G⟩}
Jm(ṽ)Kt ≜ {⟨⟨v′, 0⟩, {⟨t, ι, ⟨m, ṽ, v′⟩⟩}G⟩ | v

′ ∈ Val ∧ ι ∈ EventId}
Jlet p fKt ≜{⟨r,G1;G2⟩ | ⟨⟨v, 0⟩, G1⟩ ∈ JpKt ∧ ⟨r,G2⟩ ∈ Jf vKt}

∪ {⟨⟨v, k⟩, G1⟩ | ⟨⟨v, k⟩, G1⟩ ∈ JpKt ∧ k ̸= 0}

Jloop pKt ≜
⋃
j∈N

{
⟨⟨v, k⟩, G0; . . . ;Gj⟩

∣∣ (∀0 ≤ i < j. ⟨⟨ , 0⟩, Gi⟩ ∈ JpKt) ∧ ⟨⟨v, k + 1⟩, Gj⟩ ∈ JpKt
}

We lift the plain semantics to the level of concurrent programs and define

Jp̃K ≜
{
⟨⟨v1, . . . , vT ⟩, ∥t∈Tid Gt⟩

∣∣ ∀t ∈ Tid.⟨⟨vt, 0⟩, Gt⟩ ∈ JptKt
}

Concurrent programs only properly terminate if each thread terminates with a
break number of 0. In which case, the output of the concurrent program is the
parallel composition of the values and plain executions of the different threads.

Then, we can define executions (Def. 1), libraries (§3.1), and consistent exe-
cutions (Def. 2).

Given a concurrent program p̃ using libraries Λ, we note outcomeΛ(p̃) the
set of all output values of its Λ-consistent executions.

outcomeΛ(p̃) ≜ {ṽ | ∃⟨E, po, stmp, so, hb⟩ Λ-consistent. ⟨ṽ, ⟨E, po⟩⟩ ∈ Jp̃K}

Then, an implementation for a library L is a function I : (Tid×L.M×Val∗) →
SeqProg associating every method call of the library L to a sequential program.

Definition 12. We say that I is well defined for a library L using Λ iff for all
t ∈ Tid, m ∈ L.M and ṽ ∈ Val∗, we have:

1) L ̸∈ Λ, and I(t,m, ṽ) only calls methods of the libraries of Λ.
2) ⟨⟨−, k + 1⟩,−⟩ ̸∈ JI(t,m, ṽ)Kt, i.e. the implementation of a method call m(ṽ)

cannot return with a non-zero break number, and thus cannot cause a loop
containing a call to m(ṽ) to break inappropriately.

3) if ⟨⟨v, 0⟩, ⟨E, po⟩⟩ ∈ JI(t,m, ṽ)Kt then E ̸= ∅, i.e. if an implementation suc-
cessfully executes, it must contain at least one method call.

We note loc(I) the set of all locations that can be accessed by the imple-
mentation of I: loc(I) ≜

⋃
t,m,ṽ

⋃
(,⟨E, ⟩)∈JI(t,m,ṽ)Kt loc(E). We then define a

function T UI to map an implementation I to a concurrent program as follows.

TvUt,I ≜ v Tm(v1, . . . , vk)Ut,I ≜

{
I(t,m, ⟨v1, . . . , vk⟩) if m ∈ L.M

m(v1, . . . , vk) otherwise

Tloop pUt,I ≜ loop TpUt,I Tlet p fUt,I ≜ let TpUt,I (λv.Tf vUt,I)

Tbreakk vUt,I ≜ breakk v T⟨p1, . . . , pT ⟩UI ≜ ⟨Tp1U1,L, . . . ,TpTUT,L⟩

Using these definitions, we arrive at a notion of a sound implementation,
which holds whenever the implementation is a refinement of the library specifi-
cation.

32

Definition 13. We say that I is a sound implementation of L using Λ if, for
any program p̃ such that loc(I) ∩ loc(p̃) = ∅, we have that outcomeΛ(Tp̃UI) ⊆
outcomeΛ⊎{L}(p̃).

As soundness is difficult to prove directly, mowgli develops a modular proof
technique using an abstraction function mapping the implementation to its ab-
stract library specification. For f : A → B and r ⊆ A × A, we note f(r) ≜
{⟨f(x), f(y)⟩ | ⟨x, y⟩ ∈ r}.

Definition 14. Suppose I is a well-defined implementation of a library L using
Λ, and that G = ⟨E, po⟩ and G′ = ⟨E′, po′⟩ are plain executions using methods
of Λ and L respectively. We say that a surjective function f : E → E′ abstracts
G to G′, denoted abs

f
I,L(G,G′), iff

• E|L = ∅ (i.e. G contains no calls to the abstract library L) and E′|L = E′

(i.e. G′ only contains calls to the abstract library L);
• f(po) ⊆ (po′)∗ and ∀e1, e2, ⟨f(e1), f(e2)⟩ ∈ po′ =⇒ ⟨e1, e2⟩ ∈ po; and
• if e′ = ⟨t, ι, ⟨m, ṽ, v′⟩⟩ ∈ E′ then ⟨⟨v′, 0⟩, G|f−1(e′)⟩ ∈ JI(t,m, ṽ)Kt

Lemma 1. Given p̃ on library L and a well-defined implementation I of L, if
⟨ṽ, G⟩ ∈ JTp̃UIK then there exists ⟨ṽ, G′⟩ ∈ Jp̃K and f such that absfI,L(G,G′).

Definition 15. We say that a well defined implementation I of a library L is lo-
cally sound iff, whenever we have a Λ-consistent execution G = ⟨E, po, stmp, so, hb⟩
and abs

f
I,L(⟨E, po⟩, ⟨E′, po′⟩), then there exists stmp′, so′, and a concretisation

function g : ⟨E′, po′, stmp′⟩.SEvent → G.SEvent such that:

• g(⟨e′, a′⟩) = ⟨e, a⟩ implies f(e) = e′ and
• For all a0 such that ⟨a0, a′⟩ ∈ sto, there exists ⟨e1, a1⟩ ∈ G.SEvent such that

f(e1) = e′, ⟨a0, a1⟩ ∈ sto, and ⟨⟨e1, a1⟩, ⟨e, a⟩⟩ ∈ hb∗;
• For all a0 such that ⟨a′, a0⟩ ∈ sto, there exists ⟨e2, a2⟩ ∈ G.SEvent such that
f(e2) = e′, ⟨a2, a0⟩ ∈ sto, and ⟨⟨e, a⟩, ⟨e2, a2⟩⟩ ∈ hb∗.

• g(so′) ⊆ hb;
• For all hb′ transitive such that (ppo′ ∪ so′)+ ⊆ hb′ and g(hb′) ⊆ hb, we have
⟨E′, po′, stmp′, so′, hb′⟩ ∈ L.C, where ppo′ ≜ ⟨E′, po′, stmp′⟩.ppo.

Theorem 5. If a well-defined implementation is locally sound, then it is sound.

We show the local soundness of the different implementations given in this
paper. Thus, from the theorem above, these implementations are sound.

B.2 wlock Library

Theorem 1. The implementation IWL is sound.

Proof. We assume an {rdmawait
rmw , sv}-consistent execution G = ⟨E, po, stmp, so, hb⟩

which is abstracted via f to ⟨E′, po′⟩ that uses (only) the wlock library, i.e.

abs
f
IWL,wlock(⟨E, po⟩, ⟨E′, po′⟩) holds. We need to provide stmp′, so′, and g :

33

⟨E′, po′, stmp′⟩.SEvent → G.SEvent respecting some conditions. From ⟨E′, po′⟩,
we simply take stmp′ = stmpWL.

Since G is {rdmawait
rmw , sv}-consistent, it means (ppo∪so|rdmawait

rmw
∪so|sv) ⊆ hb,

hb is transitive and irreflexive, and the two restrictions of G are respectively
rdmawait

rmw-consistent and sv-consistent.

rdmawait
rmw-consistency implies there is some well-formed vR, vW, rf, mo, nfo,

and rao such that ib is irreflexive, ∀e.stmp|rdmawait
rmw

(e) ∈ stmpRW(e), and so|rdmawait
rmw

=
iso ∪ rfe ∪ pfg ∪ nfo ∪ rb ∪mo ∪ rao ∪ ([aNRWn]; iso

−1; rao) ∪ ([Inst]; ib).

sv-consistency implies there is some well-formed v′′R , v
′′
W , rf

′′, and mo′′, such
that stmp|sv = stmpSV, [aCR]; (po|−1

sv ∩ rb′′); [aCW] = ∅, and so|sv = iso′′ ∪ rf ′′e ∪
pf ′′∪rb′′∪mo′′. (We will use double apostrophes for references to the sv library.)

We define g as follows.

• For an event e′ = (t, , (Acqwl, (x), ())), we choose g(e′, aMF) = (er, aCR) with
er = (t, , (Readsv, (xt′), (v))) ∈ f−1(e′) the last event of the implementation
(reading a shared variable owned by some thread t′).

• For an event e′ = (t, , (Relwl, (x), ())), we choose g(e′, aCW) = (ew, aCW) with
ew = (t, , (Writesv, (xt, v + 1), ())) ∈ f−1(e′) the second event of the imple-
mentation.

First, let us show that g preserves sto (first property of local soundness). For
Relwl this is trivial using the identity function. For Acqwl, the stamp aCR is
similar to aMF w.r.t. later stamps, so (e2, a2) = (er, aCR) is enough. For an earlier
stamp a0 such that (a0, aMF) ∈ sto, we take (e1, a1) = ((t, , (RFAA, (. . . , d), ())), aNLWn)
the first event of the implementation, and with ewt = (t, , (Wait, (d), ())) the

second event we have (e1, a1)
pfg−−→ (ewt, aWT)

ppo−−→ (er, aCR) (thus included in hb)
with (a0, aNLWn) ∈ sto.

Now we need to pick a suitable so′ such that g(so′) ⊆ hb and ⟨E′, po′, stmp′, so′, ⟩
is wlock-consistent. We can assume that ⟨E′, po′⟩ respects locks, as otherwise
so′ = ∅ is enough. Thus, for each location x we need to define a total order
lo′x on A′

x ≜ {e′ | e′ ∈ E′
x ∧ m(e′) = Acqwl}. Each event e′ ∈ A′

x can be associ-

ated to its first subevent of the form ((t′, , (RFAA, (pt
′

x , xa, 1, d), ())), aNARn), with
n = n(x). From rdmawait

rmw-consistency, rao induces a total ordering on these
subevents, and we simply keep the same ordering for A′

x. As such, we define
so′ =

⋃
x

{
⟨e′1, aCW⟩, ⟨e′2, aMF⟩

∣∣ (e′1, e′2) ∈ (po′x|imm)
−1; lo′x

}
as expected, and we

have that ⟨E′, po′, stmp′, so′, ⟩ is wlock-consistent.

Thus, the rest of the proof is to show that g(so′) ⊆ hb, i.e. that the syn-
chronisations promised by the wlock library are enforced in the implemen-

tation. We can assume (e′0, aMF)
lo′x−−→ (e′2, aMF) and (e′0, aMF)

po′x|imm−−−−−→ (e′1, aCW),
with e′0 running Acqwl(x) by thread t1, e

′
1 running Relwl(x) by thread t1, and

e′2 running Acqwl(x) by thread t2. We also note (e1, aCW) = g(e′1, aCW) and

(e2, aCR) = g(e′2, aMF). Our goal is then to show (e1, aCW)
hb−→ (e2, aCR).

We proceed by induction on the ordering lo′x. The base case is for (e
′
0, aMF)

lo′x|imm−−−−→
(e′2, aMF). This base case trivially implies the general case by transitivity, since

34

the program respects locks (i.e. intermediate acquires are being released) and
(aCR, aCW) ∈ sto.

Let efaa0 = (t1, , (RFAA, (pt1x , xa, 1, d), ())) be the FAA in the implementa-

tion of e′0 and efaa2 = (t2, , (RFAA, (pt2x , xa, 1, d), ())) in the implementation of

e′2. By definition we have (efaa0 , aNARn)
(rao|Exa

)|imm−−−−−−−−−→ (efaa2 , aNARn), since any re-
mote RMW in Exa

is from an implementation of some Acqwl(x) event. From

the semantics of rdmawait
rmw we have (efaa0 , aNRWn)

hb−→ (efaa2 , aNARn) (from the

([aNRW]; iso−1; rao) component), and thus we necessarily have (efaa0 , aNRWn)
rf−→

(efaa2 , aNARn), i.e. the second FAA reads the modified value of the first. This is

because efaa2 cannot read from an earlier write (or the initial value of 0) as that
would imply an rb dependency and an hb cycle; and cannot read (rfe ⊆ hb) from

a later write, as any later write is hb after efaa2 (via rao and ppo).

There is some value v0 = vR((e
faa
0 , aNARn)) read by the first FAA operation.

By well-formedness of vR, vW, and rf, we have vR((e
faa
2 , aNARn)) = vW((e

faa
0 , aNARn)) =

v0+1, i.e. the following Acqwl(x) gets the next ticket. More generally, it is clear

every Acqwl(x) gets a different ticket. We also have vW((e
faa
0 , aNLWn)) = v0, i.e.

pt1x is modified to contain v0. Respectively pt2x is modified to contain v0 + 1.
Let er0 be the third event of the implementation of e′0 reading pt1x . We nec-

essarily have (efaa0 , aNLWn)
rf−→ (er0, aCR). This is because er0 cannot read from

the future (it would create an rf; ippo cycle in ib) and the second event Wait(d)
makes sure all previous modifications of pt1x are available (ignoring the last one
would be an rb; hb cycle). Thus, in the implementation of e′0, the meta-variable v
corresponds to the value v0. More generally, in any implementation of Acqwl(x),
v corresponds to the ticket obtained (e.g. v0 + 1 for e′2).

The implementation of e′1 (running Relwl(x)) also reads pt1x . For the same
reason, v corresponds to the ticket of the previous Acqwl(x), i.e. v0 in our case.
Since the program respects locks, every Relwl(x) handles a different ticket, and
e′1 is the only one handling ticket v0 for x.

The second event in the implementation of e′1 is e1 = (t1, , (Writesv, (xt1 , v0+
1), ())) modifying xt1 . (There is also a broadcast propagating the new value
across the network.) By well-formedness we have v′′W ((e1, aCW)) = v0+1. The last
event in the implementation of e′2 is of the form e2 = (t2, , (Readsv, (xt2), (v0 +
1))) returning a value of v0 + 1, and by well-formedness v′′R (e2, aCR) = v0 + 1.
The read is necessarily on xt2 as other xt shared variables are never modified
to contain v0 + 1. Now, by well-formedness of rf ′′ we can create a dependency
between e1 and e2.

If n(t1) = n(t2) (i.e. the two commands are on the same node, perhaps even

the same thread), then we have (e1, aCW)
rf′′−−→ (e2, aCR) as (e1, aCW) is the only

element of G.Wn(t1) writing v0 + 1. If they are different threads or e2
po−→ e1,

then rf ′′e ⊆ hb is enough. Otherwise t1 = t2 with e1
po−→ e2 and the RFAA/Wait

in-between e1 and e2 forces a sequence of dependencies ppo; pfg; ppo ⊆ hb.
Else n(t1) ̸= n(t2) and e2 reads from an element of G.Wn(t2), which is

a subevent of a broadcast reading from e1. (Technically, this could be from

35

a delayed broadcast of a previous Relwl(x) by thread t1, not necessarily the
broadcast immediately after e1.) Thus we similarly have ((e1, aCW), (e2, aCR)) ∈
rf ′′e ; iso

′′; rf ′′e ⊆ hb.

B.3 slock Library

ISL(t, Acqsl, (x)) ≜ Acqwl(x) ISL(t, Relsl, (x)) ≜ GFence(Node); Relwl(x)

Theorem 2. The implementation ISL is sound.

Proof. This is very straightforward from the semantics of the different libraries.
If an execution is lock-well-formed (Definition 4) with respect to strong locks,

the implementation is clearly lock-well-formed with respect to weak locks.
A strong acquire Acqsl(x) should behave as stamp aMF, which is the case of

the implementation Acqwl(x). A strong release Relsl(x) should behave as a global
fence (stamps aGFn) and synchronise with later acquires. In the implementation,
the first call executes a global fence (stamps aGFn, see Appendix A), while the
latter call is a weak release that synchronises with later acquires (Definition 5).
The two components execute in order according to ppo ⊆ hb (cell L2 in Fig. 9).

B.4 nlock Library

Theorem 3. The implementation INL is sound.

Proof. We assume an {rdmawait
rmw}-consistent execution G = ⟨E, po, stmp, so, hb⟩

which is abstracted via f to ⟨E′, po′⟩ that uses (only) the nlock library, i.e.

abs
f
INL,nlock

(⟨E, po⟩, ⟨E′, po′⟩) holds. We need to provide stmp′, so′, and g :
⟨E′, po′, stmp′⟩.SEvent → G.SEvent respecting some conditions. From ⟨E′, po′⟩,
we simply take stmp′ = stmpNL.

Since G is {rdmawait
rmw}-consistent, it means (ppo ∪ so) ⊆ hb, hb is transitive

and irreflexive, and G is rdmawait
rmw-consistent. Thus there is some well-formed

vR, vW, rf, mo, nfo, and rao such that ib is irreflexive, ∀e.stmp(e) ∈ stmpRW(e),
and so = iso ∪ rfe ∪ pfg ∪ nfo ∪ rb ∪mo ∪ rao ∪ ([aNRW]; iso−1; rao) ∪ ([Inst]; ib).

As an intermediate result: for each thread t we have mopt
x
⊆ po, i.e. the

modifications of the temporary location ptx happen in program order. Since hb
containing mo is acyclic, it is enough to show that whenever s1, s2 ∈ G.Wpt

x
and

(s1, s2) ∈ po then we have (s1, s2) ∈ hb. If s1 has a stamp aCW we immediately
have (s1, s2) ∈ ppo ⊆ hb. From the implementation, in the other cases s1 has a
stamp aNLWn from either a RFAA or Get operation. In each case, s1 is immediately
followed by some (e, aWT) forcing the write to finish. Thus we have (s1, s2) ∈
pfg; ppo ⊆ hb.

We now define g as follows.

• For an event e′ = (t, , (Acqnl, (x), ())), we choose g(e′, aMF) = (er, aCR) with
er = (t, , (Read, (ptx), (v))) ∈ f−1(e′) the last read event before breaking the
loop, and penultimate event of the implementation.

36

• For an event e′ = (t, , (Relnl, (x), ())), we choose: g(e′, aRFn) = (erf , aRFn)
with erf = (t, , (Rfence, (n(x)), ())) ∈ f−1(e′) the first event of the implemen-
tation; and g(e′, aNRWn) = (eput, aNRWn) with eput = (t, , (Put, (xr, p

t
x,), ())) ∈

f−1(e′) the second event of the implementation.

First, let us show that g preserves sto (first property of local soundness). For
Relnl this is trivial as g maps to the same stamps. For Acqnl, the stamp aCR is
similar to aMF w.r.t. later stamps, so (e2, a2) = (er, aCR) is enough. For an earlier
stamp a0 such that (a0, aMF) ∈ sto, we take (e1, a1) = ((t, , (RFAA, (. . . , d), ())), aNLWn)
the first event of the implementation, and with ewt = (t, , (Wait, (d), ())) the

second event we have (e1, a1)
pfg−−→ (ewt, aWT)

ppo−−→ (er, aCR) (thus included in hb)
with (a0, aNLWn) ∈ sto.

Now we need to pick a suitable so′ such that g(so′) ⊆ hb and ⟨E′, po′, stmp′, so′, ⟩
is nlock-consistent. We can assume that ⟨E′, po′⟩ respects locks, as otherwise
so′ = ∅ is enough. Thus, for each location x we need to define a total order lo′x on
A′

x ≜ {e′ | e′ ∈ E′
x ∧ m(e′) = Acqnl}. Each event e′ ∈ A′

x can be associated to its

first subevent of the form ((t′, , (RFAA, (pt
′

x , xa, 1, d), ())), aNARn), with n = n(x).
From rdmawait

rmw-consistency, rao induces a total ordering on these subevents, and
we simply keep the same ordering for A′

x. As such, we define

so′ =
{
⟨e′, aRFn(loc(e′))⟩, ⟨e′, aNRWn(loc(e′))⟩

∣∣ m(e′) = Relnl
}⋃

x∈Loc

{
⟨e′1, aNRWn(loc(e′1))⟩, ⟨e

′
2, aMF⟩

∣∣ (e′1, e′2) ∈ (po′x|imm)
−1; lo′x

}
as expected, and we have that ⟨E′, po′, stmp′, so′, ⟩ is nlock-consistent.

Thus, the rest of the proof is to show that g(so′) ⊆ hb, i.e. that the synchroni-
sations promised by the nlock library are enforced in the implementation. The
easy case is for the internal synchronisation. For (⟨e′, aRFn⟩, ⟨e′, aNRWn⟩) ∈ so′,
we clearly have (g(⟨e′, aRFn⟩), g(⟨e′, aNRWn⟩)) ∈ ppo ⊆ hb.

For the main case, we can assume (e′0, aMF)
lo′x−−→ (e′2, aMF) and (e′0, aMF)

po′x|imm−−−−−→
(e′1, aNRWn), with n(x) = n, e′0 running Acqnl(x) by thread t1, e

′
1 running Relnl(x)

by thread t1, and e′2 running Acqnl(x) by thread t2. We also note (e1, aNRWn) =

g(e′1, aNRWn) and (e2, aCR) = g(e′2, aMF). Our goal is then to show (e1, aNRWn)
hb−→

(e2, aCR).

We proceed by induction on the ordering lo′x. The base case is for (e
′
0, aMF)

lo′x|imm−−−−→
(e′2, aMF). This base case trivially implies the general case by transitivity, since
the program respects locks (i.e. intermediate acquires are being released) and
(aCR, aNRWn) ∈ sto.

Let efaa0 = (t1, , (RFAA, (pt1x , xa, 1, d), ())) be the FAA in the implementa-

tion of e′0 and efaa2 = (t2, , (RFAA, (pt2x , xa, 1, d), ())) in the implementation of

e′2. By definition we have (efaa0 , aNARn)
(rao|Exa

)|imm−−−−−−−−−→ (efaa2 , aNARn), since any re-
mote RMW in Exa is from an implementation of some Acqwl(x) event. From

the semantics of rdmawait
rmw we have (efaa0 , aNRWn)

hb−→ (efaa2 , aNARn) (from the

([aNRW]; iso−1; rao) component), and thus we necessarily have (efaa0 , aNRWn)
rf−→

37

(efaa2 , aNARn), i.e. the second FAA reads the modified value of the first. This is

because efaa2 cannot read from an earlier write (or the initial value of 0) as that
would imply an rb dependency and an hb cycle; and cannot read (rfe ⊆ hb) from

a later write, as any later write is hb after efaa2 (via rao and ppo).

There is some value v0 = vR((e
faa
0 , aNARn)) read by the first FAA operation.

By well-formedness of vR, vW, and rf, we have vR((e
faa
2 , aNARn)) = vW((e

faa
0 , aNARn)) =

v0+1, i.e. the following Acqwl(x) gets the next ticket. More generally, it is clear

every Acqwl(x) gets a different ticket. We also have vW((e
faa
0 , aNLWn)) = v0, i.e.

pt1x is modified to contain v0. Respectively pt2x is modified to contain v0 + 1.
Let er0 be the third event of the implementation of e′0 reading pt1x . We nec-

essarily have (efaa0 , aNLWn)
rf−→ (er0, aCR). This is because er0 cannot read from

the future (it would create an rf; ippo cycle in ib) and the second event Wait(d)
makes sure all previous modifications of pt1x are available (ignoring the last one
would be an rb; hb cycle since mo

p
t1
x

⊆ po). Thus, in the implementation of e′0,
the meta-variable v corresponds to the value v0. More generally, in any imple-
mentation of Acqwl(x), v corresponds to the ticket obtained (e.g. v0 + 1 for e′2).
So the last event ew0 of the implementation of e′0 modifies pt1x to v0 + 1.

The implementation of e′1 (running Relwl(x)) has an operation Put (event e1)

reading pt1x to send to xr. We necessarily have (ew0 , aCW)
rf−→ (e1, aNLRn), since the

write is available ((aCW, aNLRn) ∈ sto) and later write on pt1x from later RFAA are
not finished ((aNLRn, aNLWn) ∈ sto and n(xr) = n(xa)). Thus vW((e1, aNRWn)) =
vR((e1, aNLRn)) = v0 + 1. More generally, each Relwl(x) modifies xr to contain
the next value after the ticket obtained by the previous Acqwl(x) operation.
Since each Acqwl(x) handles a different ticket, this is the only modification of
xr to contain v0 + 1.

The penultimate event in the implementation of e′2 (causing the loop break)
is of the form e2 = (t2, , (Read, (pt2x), (v0+1))) returning a value of v0+1, and by
well-formedness vR((e2, aCR)) = v0+1. If we note eget2 = (t2, , (Get, (pt2x , xr, d), ()))

the last Get event preceding e2 in the implementation, we clearly have (eget2 , aNLWn)
rf−→

(e2, aCR) (as previously, the intermediate Wait makes the write available), and
vR((e

get
2 , aNRRn)) = vW((e

get
2 , aNLWn)) = vR((e2, aCR)) = v0 + 1.

By well-formedness of rf, we also have (e1, aNRWn)
rf−→ (eget2 , aNRRn) from the

only write of v0+1 on xr. Finally, we have ((e1, aNRWn), (e2, aCR)) ∈ rfe; iso; rfe ⊆
hb.

B.5 rdmasc
rmw Library

Theorem 4. The implementation ISC is sound.

Proof. We assume an {rdmawait
rmw ,nlock}-consistent execution G = ⟨E, po, stmp, so, hb⟩

which is abstracted via f to ⟨E′, po′⟩ that uses (only) the rdmasc
rmw library, i.e.

abs
f
ISC,rdmasc

rmw
(⟨E, po⟩, ⟨E′, po′⟩) holds. We need to provide stmp′, so′, and g :

⟨E′, po′, stmp′⟩.SEvent → G.SEvent respecting some conditions. From ⟨E′, po′⟩,
we simply take stmp′ = stmpSC.

38

Since G is {rdmawait
rmw ,nlock}-consistent, it means (ppo∪so|rdmawait

rmw
∪so|nlock) ⊆

hb, hb is transitive and irreflexive, and the two restrictions of G are respectively
rdmawait

rmw-consistent and nlock-consistent.
rdmawait

rmw-consistency implies there is some well-formed vR, vW, rf, mo, nfo,
and rao such that ib is irreflexive, ∀e.stmp|rdmawait

rmw
(e) ∈ stmpRW(e), and so|rdmawait

rmw
=

iso ∪ rfe ∪ pfg ∪ nfo ∪ rb ∪mo ∪ rao ∪ ([aNRW]; iso−1; rao) ∪ ([Inst]; ib).
ISC respects locks, as every operation is implemented to contain an Acqnl

(first) and a Relnl operation (later) on the same lock location. As such ⟨E|nlock, po|nlock⟩
respects locks. So nlock-consistency implies stmp|nlock = stmpNL and for each
lock location l there is a total order lol on {e | e ∈ El ∧ m(e) = Acqnl} for the
acquiring of location l such that:

so|nlock =
{
⟨e, aRFn(loc(e))⟩, ⟨e, aNRWn(loc(e))⟩

∣∣ m(e) = Relnl
}⋃

l∈Loc

{
⟨e1, aNRWn(loc(e1))⟩, ⟨e2, aMF⟩

∣∣ (e1, e2) ∈ (pol|imm)
−1; lol

}
We define g to map to the first subevent of the implementation. For an event

e′ ∈ E′, we choose g(e′, aMF) = (e, aMF) with e = (t, , (Acqnl, ,)) ∈ f−1(e′) the
first event of the implementation. This g clearly preserves sto (first property of
local soundness), as it maps subevents to subevents using the same stamp.

Now we need to pick a suitable so′ such that g(so′) ⊆ hb and ⟨E′, po′, stmp′, so′, ⟩
is rdmasc

rmw-consistent. I.e., we need well-formed v′R, v
′
W, rf

′, and mo′ such that
g(po′), g(rf ′), g(mo′), and g(rb′) are all included in hb. We immediately have
g(po′) ∈ ppo ⊆ hb since (aMF, aMF) ∈ sto. For the other relations, we can con-
sider each location x independently. Let us note n = n(x) = n(lx). All the
relevant operations acquire the lock lx, as such we can use lolx to order them.

We define mo′x and rf ′x as follows:

mo′x ≜ {(s′1, s′2) | s′1, s′2 ∈ G′.W ∧ (g(s′1), g(s
′
2)) ∈ lolx}

rf ′x ≜

{
(s′1, s

′
2)

∣∣∣∣ s′1 ∈ G′.W ∧ s′2 ∈ G′.R ∧ (g(s′1), g(s
′
2)) ∈ lolx ∧

∀s′0.(s′1, s′0) ∈ mo′x =⇒ (g(s′0), g(s
′
2)) ̸∈ lolx

}
with the slight abuse of notation of writing ((e1, a1), (e2, a2)) ∈ lol to mean
(e1, e2) ∈ lol. I.e., the location x is modified in the order of the acquires, and
reads read from the latest previous write.

We define v′R and v′W from the values of vR and vW on the RDMA subevent (on
x) of the implementation. E.g., for e′ running FAAsc(x, v), there is an event e =
(, , (RFAA, (, x, v,), ())) ∈ f−1(e′) and we note v′R((e

′, aMF)) = vR((e, aNARn))
and v′W((e

′, aMF)) = vW((e, aNRWn)).
We can easily see that g(rf ′), g(mo′), and g(rb′) are all included in hb by de-

sign. This comes from the fact that (e1, e2) ∈ lolx implies ((e1, aMF), (e2, aMF)) ∈
ppo; so ⊆ hb (since E respects nodes and the release operation exists) and for rb′

because lolx is total on the acquiring of the lock lx (Thus if (g(s′0), g(s
′
2)) ̸∈ lolx

and s′0 ̸= s′2 then (g(s′2), g(s
′
0)) ∈ lolx).

The remaining part of the proof is to show that v′R, v
′
W, and rf ′ are well-formed.

39

Firstly, let’s consider v′W. For RMW operations, the value is correct from
the well-formedness of vW. For an event e′ running Writesc(x, v), the implemen-
tation contains Write(ptx, v); Put(x, p

t
x,) (let’s call them e1 and e2), and we

need to show v′W((e
′, aMF)) = v. By definition v′W((e

′, aMF)) = vW((e2, aNRWn)) =
vR((e2, aNLRn)) and vW((e1, aCW)) = v. To conclude, it is enough to show ((e1, aCW), (e2, aNLRn)) ∈
rf. Clearly e1 is finished when we run e2 (i.e., ((e2, aNLRn), (e1, aCW)) ∈ rb would
create an hb cycle). It is less obvious that e2 cannot read from a later Write(ptx, v

′)
(let’s call it event e3) of a later operation Writesc(x, v

′) by the same thread. This
is because this later operation would need to acquire the lock lx. By the seman-
tics of nlock, this creates a synchronisation (since e1 is also towards node n),
and we have ((e2, aNLRn), (e3, aCW)) ∈ ppo; so|nlock; ppo ⊆ hb. As such, reading
from e3 would create an hb cycle and is not possible.

Secondly, for v′R and non-Writesc operations, we need to show that the value
returned (i.e. by er running Read(rt)) is the value read by the RDMA operation
e running m(rt, x, . . . , d) with m ∈ {Readsc, CASsc, FAAsc}. For this, we simply
show ((e, aNLWn), (er, aCR)) ∈ rf. From the in-between Wait operation, we have
((e, aNLWn), (er, aCR)) ∈ pfg; ppo ⊆ hb. Thus, er cannot ignore e (i.e. rb would
create an hb cycle), and cannot read from a later operations (it would create an
ib cycle).

Finally, we are left with checking that rf ′ is well-formed. We need to show that
whenever (s′1, s

′
2) ∈ rf ′, with s′i = (e′i, aMF), we have v

′
W(s

′
1) = v′R(s

′
2). (Technically,

also that (, s′2) ̸∈ rf ′ implies v′R(s
′
2) = 0, but this follows from a similar reasoning.)

Let ei be the RDMA operation in the implementation of e′i, by definition we have
v′W(s

′
1) = vW((e1, aNRWn)) and v′R(s

′
2) = vR((e2, a2)) (with a2 ∈ {aNARn, aNRRn}

depending on the case). Our sufficient goal is then to show that we necessarily
have ((e1, aNRWn), (e2, a2)) ∈ rf. By definition of rf ′, we have (g(s′1), g(s

′
2)) ∈ lolx

as well as ∀s′0 ∈ G′.W. ((s′1, s
′
0) ∈ mo′x =⇒ (g(s′0), g(s

′
2)) ̸∈ lolx).

The first point implies ((e1, aNRWn), (e2, a2)) ∈ ppo; so|nlock; ppo ⊆ hb by the
semantics of locks. This makes ((e2, a2), (e1, aNRWn)) ∈ rb impossible (hb cycle),
and e2 reads from either e1 or a later write: there exists an RDMA operation
e3 (in the implementation of some e′3) such that ((e3, aNRWn), (e2, a2)) ∈ rf with

(e1, aNRWn)
mo∗−−→ (e3, aNRWn). Note that e2 ̸= e3 or it would create a rfe; iso cycle

in hb; i.e. an event cannot read from itself. Thus we need to show e1 = e3, and
by contradiction let us assume (e1, aNRWn)

mo−−→ (e3, aNRWn).

We then show (e′1, aMF)
mo′−−→ (e′3, aMF). Since lolx is a total order, we have ei-

ther (g(s′1), g(s
′
3)) ∈ lolx or (g(s′3), g(s

′
1)) ∈ lolx . To show the first, we assume the

second by contradiction, i.e. that e′3 acquires first. Given the implementation ISC,

there is a Relnl(x) event e
r
3 such that g(e′3)

po−→ e3
po−→ er3. Thus from the seman-

tics of nlock we have an hb cycle (e3, aNRWn)
ppo−−→ (er3, aNRWn)

so|nlock−−−−→ g(e′1)
ppo−−→

(e1, aNRWn)
mo−−→ (e3, aNRWn) providing a contradiction, and we necessarily have

(e′1, aMF)
mo′−−→ (e′3, aMF).

Now, from the definition of rf ′, the fact lolx is a total order, and that e3 ̸= e2,
we have (g(s′2), g(s

′
3)) ∈ lolx . Similarly to previously, this implies ((e2, a2), (e3, aNRWn)) ∈

ppo; ppo; so|nlock; ppo ⊆ hb by the semantics of locks (using both the aRFn and

40

aNLWn stamps of the release). This contradicts ((e3, aNRWn), (e2, a2)) ∈ rfe ⊆ hb.
Thus e1 = e3, ((e1, aNRWn), (e2, a2)) ∈ rf, and rf ′ is well-formed.

C Declarative Semantics of rdmatso
rmw à la mowgli

In this appendix, we first (§C.1) present the declarative semantics of rdmatso
rmw

in a format similar to that of rdmatso in [4], but extended with remote RMW
operations similarly to the semantics of rdmawait

rmw given in §3. It is slightly
different from the one in §D, as we use the stamps and subevents system of
mowgli.

We then (§C.2) provide a definition of the implementation of rdmawait
rmw into

rdmatso
rmw. Finally (§C.3), we give a proof of the soundness of this implementa-

tion, similarly to [4].

C.1 Semantics

Our definition of rdmatso
rmw is closer to an independent language than a library.

We do not need a relation hb to represent the potential rest of the program,
as a program cannot combine instructions from rdmatso

rmw and other libraries
presented in this paper.

We use the following 13 methods:

m(ṽ) ::= WriteTSO(x, v) | ReadTSO(x) | CASTSO(x, v1, v2) | MfenceTSO()

| GetTSO(x, y) | PutTSO(x, y) | Poll(n) | RfenceTSO(n)

| RCASTSO(x, y, v1, v2) | RFAATSO(x, y, v)

| SetAdd(x, v) | SetRemove(x, v) | SetIsEmpty(x)

• WriteTSO : Loc× Val → ()
• ReadTSO : Loc → Val
• CASTSO : Loc× Val× Val → Val
• MfenceTSO : () → ()
• GetTSO : Loc× Loc → Val
• PutTSO : Loc× Loc → Val
• Poll : Node → Val

• RfenceTSO : Node → ()

• RCASTSO : Loc× Loc× Val2 → Val

• RFAATSO : Loc× Loc× Val → Val

• SetAdd : Loc× Val → ()

• SetRemove : Loc× Val → ()

• SetIsEmpty : Loc → B

This version is based on [4] extended with remote RMW. Compared to
rdmatso from [3], we slightly extend the language so that RDMA operations
return an arbitrary unique identifier, and polling also returns the same identifier
of the operation being polled. In addition, we also assume basic set operations
SetAdd, SetRemove, and SetIsEmpty to store these new identifiers, where the
locations used for sets do not overlap with locations used for other operations.

Consistency predicate. An execution of an rdmatso
rmw program is of the form

G = ⟨E, po, stmp, so⟩. Note that hb = (ppo∪ so)+ does not have the flexibility of
containing additional external constraints.

We say that a stamping function stmpTSO is valid if:

41

• Polls have stamp aWT: stmpTSO((, , (Poll, ,))) = {aWT}.
• Auxiliary set operations have stamp aMF: stmpTSO((, , (SetAdd, ,))) =
stmpTSO((, , (SetRemove, ,))) = stmpTSO((, , (SetIsEmpty, ,))) = {aMF}.

• Other events follow the validity constraints of rdmawait
rmw (cf. Section 3). E.g.,

events calling WriteTSO have stamp aCW, while events calling GetTSO towards
node n have stamps aNRRn and aNLWn. We also define loc on subevents simi-
larly to rdmawait

rmw .

We mark set operations with aMF to simplify the consistency conditions, as
we do not want to explicitly integrate them in the read (R) and write (W)
subevents.

Given G = ⟨E, po, stmpTSO, so⟩, we say that vR, vW, rf, mo, nfo, pf, and rao are
well-formed if:

• vR, vW, rf, mo, nfo, and rao are well-formed, as in rdmawait
rmw ;

• Let Pn ≜ {(e, aWT) | e = (, , (Poll, (n),)) ∈ E} be the set of poll (sub)events
towards node n. Let Cn ≜

{
(e, aNLWn)

∣∣ m(e) ∈ {GetTSO, RCASTSO, RFAATSO
}}

∪{
(e, aNRWn)

∣∣ m(e) = PutTSO
}
be the set of (final writes of) remote operations

towards node n that need polling. Note that, for remote RMW operations,
polling only synchronises with the aNLWn part and not with the (potential)
aNRWn part.
Then pf ⊆

⋃
n∈Node Cn × Pn is the polls-from relation, relating earlier NIC

writes to later polls. Moreover:
• pf ⊆ po (we can only poll previous operations of the same thread);
• pf is functional on its domain (every NIC write can be polled at most once);
• pf is total and functional on its range (every Poll polls from exactly one
NIC write);

• Poll events poll-from the oldest non-polled remote operation towards the
given node:

for each node n, if w1, w2 ∈ Cn and w1
po−→ w2

pf−→ p2, then there exists p1

such that w1
pf−→ p1

po−→ p2;
• and a Poll returns the unique identifier of the polled operation:

if ((, , (, , v1)),)
pf−→ ((, , (Poll, , v2)), aWT) then v1 = v2.

We use the derived relations rb, rbi, rfe, rf i, ippo, and iso as defined for
rdmawait

rmw . We can then define ib as follows:

ib ≜ (ippo ∪ iso ∪ rf ∪ pf ∪ nfo ∪ rbi ∪ {(e, aNRWn), (e, aNLWn)})+

The last new component states that, for remote RMW operations, the re-
mote write part starts before the local write part. As mentioned previously, this
does not imply that they finish in order, and this component is not included in
so. Since it does not prevent any behaviour, we remove this component in the
definition rdmawait

rmw (§3), but we keep it here as it simplifies the soundness proof
(Theorem 6) and the equivalence proof with the operational semantics (Ap-
pendix D.5).

42

Definition 16 (rdmatso
rmw-consistency). G = ⟨E, po, stmp, so⟩ is rdmatso

rmw-
consistent if:

• (ppo ∪ so)+ is irreflexive;
• ⟨E, po⟩ respects nodes (as in rdmawait

rmw);
• stmp is valid;
• there exists well-formed vR, vW, rf, mo, nfo, pf, and rao such that ib is irreflexive
and
so = iso∪ rfe∪ [aNLW]; pf ∪nfo∪ rb∪mo∪ rao∪ ([aNRW]; iso−1; rao)∪ ([Inst]; ib);

• identifiers for RDMA operations are unique: if e1 and e2 are both of the form
(, , (m, , v)) with m ∈

{
PutTSO, GetTSO, RCASTSO, RFAATSO

}
then e1 = e2;

• and the set operations are (per-thread) sound: if SetIsEmpty returns true,
then every value added to the set was subsequently removed. I.e., if e1 =

(t, , (SetAdd, (x, v),), e3 = (t, , (SetIsEmpty, (x), true)), and e1
po−→ e3, then

there exists e2 = (t, , (SetRemove, (x, v),) such that e1
po−→ e2

po−→ e3.

C.2 Implementation Function

In Fig. 16 we define the implementation IW from a full program using only the
rdmawait

rmw library into a program using only rdmatso
rmw. We assume threads use

disjoint work identifiers d ∈ Wid, otherwise it is straightforward to rename them.
For each location x of rdmawait

rmw , we also use a location x for rdmatso
rmw. For

each work identifier d of rdmawait
rmw , we use new rdmatso

rmw locations
{
d1, . . . , dN

}
where N ≜ #(Node) is the number of nodes. Each location dn is used as a set
containing the identifiers of ongoing operations towards node n.

Most rdmawait
rmw operations (Write, Read, CAS, Mfence, and Rfence) are di-

rectly translated into their rdmatso
rmw counterparts. An operation Get(x, y, d) to-

wards node n is translated into a similar GetTSO(x, y) whose output is added to
the set dn; We proceed similarly for other RDMA operations. Finally, a Wait(d)
operation needs to poll until all relevant operations are finished, i.e. the sets{
d1, . . . , dN

}
are all empty. Whenever we poll, we obtain the identifier of a fin-

ished operation, and we remove it from all sets where it might be held. We
remove it from dn but also from any other set dnk tracking a different group of
operations, as otherwise a later call to Wait(dk) would hang and never return.

C.3 Soundness

We do not prove that the implementation above is locally sound as it does not
apply for this case. Instead, we assume a full program using only the rdmawait

rmw

library and compile it into rdmatso
rmw.

Theorem 6. Let p̃ be a program using only the rdmawait
rmw library. Then we have

outcomerdmatso
rmw

(Tp̃UIW) ⊆ outcome{rdmawait
rmw}(p̃), where:

outcome{rdmawait
rmw}(p̃) = {ṽ | ∃⟨E, po, stmp, so, hb⟩ {rdmawait

rmw}-consistent. ⟨ṽ, ⟨E, po⟩⟩ ∈ Jp̃K}
outcomerdmatso

rmw
(Tp̃UIW) = {ṽ | ∃⟨E, po, stmp, so⟩ rdmatso

rmw-consistent. ⟨ṽ, ⟨E, po⟩⟩ ∈ JTp̃UIWK}

43

For a thread t using work identifiers {d1, . . . , dK} :

IW(t, Write, (x, v)) ≜ Write
TSO(x, v)

IW(t, Read, (x)) ≜ Read
TSO(x)

IW(t, CAS, (x, v1, v2)) ≜ CAS
TSO(x, v1, v2)

IW(t, Mfence, ()) ≜ Mfence
TSO()

IW(t, Rfence, (n)) ≜ Rfence
TSO(n)

IW(t, Get, (x, y, d)) ≜

let v = Get
TSO(x, y) in SetAdd(dn(y), v)

IW(t, Put, (x, y, d)) ≜

let v = Put
TSO(x, y) in SetAdd(dn(x), v)

IW(t, Wait, (d)) ≜

For n in 1, . . . , N do {
While (SetIsEmpty(dn) ̸= true) do {
let v = Poll(n) in

For k in 1, . . . ,K do {
SetRemove(dnk , v) } } }

IW(t, RCAS, (x, y, v1, v2, d)) ≜

let v = RCAS
TSO(x, y, v1, v2) in SetAdd(d

n(y), v)

IW(t, RFAA, (x, y, v
′, d)) ≜

let v = RFAA
TSO(x, y, v′) in SetAdd(dn(y), v)

Fig. 16: Implementation IW of rdmawait
rmw into rdmatso

rmw

Proof. By definition, we are given G = ⟨E, po, stmp, so⟩ rdmatso
rmw-consistent

(Definition 16) such that ⟨ṽ, ⟨E, po⟩⟩ ∈ JTp̃UIWK. Among others, it means ⟨E, po⟩
respects nodes and there exists well-formed vR, vW, rf, mo, nfo, pf, and rao such
that ib is irreflexive, stmp is valid, so = iso∪ rfe ∪ [∪n aNLWn]; pf ∪ nfo∪ rb∪mo∪
rao ∪ ([aNRW]; iso−1; rao) ∪ ([Inst]; ib), and hb ≜ (ppo ∪ so)+ is irreflexive.

From Lemma 1, since p̃ uses only rdmawait
rmw , there is E′, po′, f such that

⟨ṽ, ⟨E′, po′⟩⟩ ∈ Jp̃K and abs
f
IW,rdmawait

rmw
(⟨E, po⟩, ⟨E′, po′⟩). Note that this clearly

implies ⟨E, po⟩ also respects nodes, as the implementation IW keeps the same loca-
tions. Our objective is to find stmp′, so′, and hb′ such that G′ = ⟨E′, po′, stmp′, so′, hb′⟩
is {rdmawait

rmw}-consistent (Definitions 2 and 8). To choose a valid function stmp′,
most values are forced. For remote compare-and-swap, we make the same choice
as stmp. I.e. for each RCAS we assert it succeeds iff the corresponding RCASTSO

in its implementation succeeds. We will also pick hb′ ≜ (ppo′ ∪ so′)+ since there
is no external constraints. Thus, we only need to carefully pick so′ and show it
works.

While our objective is not exactly local soundness (Definition 15), we still use
a concretisation function g : ⟨E′, po′, stmp′⟩.SEvent → G.SEvent to then define
so′.

• For e′ = (t, , (Write, (x, v), ())), from the definition of the implementation IW
and the abstraction f , there is some event e = (t, , (WriteTSO, (x, v), ())) ∈
f−1(e′). We define g(e′, aCW) = (e, aCW). For events calling Read, CAS, Mfence,
and Rfence, we proceed similarly and let g map each subevent to their coun-
terpart in the implementation.

• For e′ = (t, , (Get, (x, y, d), ())), there is some event e = (t, , (GetTSO, (x, y), (v))) ∈
f−1(e′). We define g(e′, aNRRn(y)) = (e, aNRRn(y)) and g(e′, aNLWn(y)) = (e, aNLWn(y)).
We proceed similarly for Put, RCAS, and RFAA events.

44

• Finally for e′ = (t, , (Wait, (d), ())), there is in f−1(e′) some last event (in po
order) of the form e = (t, , (SetIsEmpty, (dN), true)) confirming the set dN

tracking operations towards the last node N is empty. We define g(e′, aWT) =
(e, aMF).

We can see that g(⟨e′, a′⟩) = ⟨e, a⟩ implies that f(e) = e′ and that a is more
restrictive than a′.

Each subevent in G′.R (resp. G′.W) is mapped through g to a subevent in
G.R (resp. G.W) using the same stamp and location. Thus it is straightforward
to define v′R, v

′
W, rf

′, mo′, nfo′, and rao′ by relying on their counterparts in G. E.g.
v′R(s

′) ≜ vR(g(s
′)) and rf ′ ≜ {(s′1, s′2) | (g(s′1), g(s′2)) ∈ rf}. The well-formedness

of vR, vW, rf, mo, nfo, and rao trivially implies that of v′R, v
′
W, rf

′, mo′, nfo′, and
rao′. From this, we can define all the expected derived relations, including pfg′,
pfp′, and ib′ ≜ (ippo′ ∪ iso′ ∪ rf ′ ∪ pfg′ ∪ pfp′ ∪ nfo′ ∪ rb′i)

+. We then define
so′ ≜ iso′ ∪ rf ′e ∪ pfg′ ∪ nfo′ ∪ rb′ ∪mo′ ∪ rao′ ∪ ([aNRW]; iso′−1; rao′) ∪ ([Inst]; ib′),
and as previously mentioned hb′ ≜ (ppo′ ∪ so′)+.

To show {rdmawait
rmw}-consistency, we are left to prove that ib′ and hb′ are

irreflexive. For this, it is enough to show that g(ib′) ⊆ ib and g(hb′) ⊆ hb ≜
(ppo ∪ so)+ since we know both ib and hb to be irreflexive.

For all subevent s′, g(s′) has a more restrictive stamp than s′ (in most cases
it is the same stamp, but for Wait the stamp aMF is more restrictive than aWT);
this implies that g(ppo′) ⊆ ppo. Then, by definition, it is trivial to check that
g(rf ′) ⊆ rf, g(mo′) ⊆ mo, g(nfo′) ⊆ nfo, g(ippo′) ⊆ ippo, g(rf ′e) ⊆ rfe, g(iso

′) ⊆ iso,
g(rb′) ⊆ rb, and g(rb′i) ⊆ rbi.

To finish the proof, we need the following crucial pieces: g(pfp′) ⊆ ib, g(pfg′) ⊆
ib, and g(pfg′) ⊆ hb. In fact, it is enough to show that g(pfp′) ⊆ ib?; pf; ppo+

and g(pfg′) ⊆ pf; ppo+. This is because pf; ppo+ ⊆ ib, [aNLW]; pf; ppo+ ⊆ hb, and
the domain of g(pfg′) is included in ∪n G.aNLWn by definition.

Let us start with pfg′, assuming ((e′1, aNLWn), (e
′
2, aWT)) ∈ pfg′. By definition

they are of the form e′1 = (t, , (, (. . . , d), ())) and e′2 = (t, , (Wait, (d), ())), for
some t, d, and m(e′1) ∈ {Get, RCAS, RFAA}, with (e′1, e

′
2) ∈ po′ and n the remote

node of this operation. By definition of the implementation and the abstraction,
f−1(e′1) contains two events e1 = (t, , (m, (. . .), (v))) with a similar method m ∈{
GetTSO, RCASTSO, RFAATSO

}
and ea = (t, , (SetAdd, (dn, v), ())), with e1

po−→ ea.
Meanwhile f−1(e′2) contains a last event e2 = (t, , (SetIsEmpty, (dN), true))

and an earlier event e3 = (t, , (SetIsEmpty, (dn), true)), with e3
po∗−−→ e2, con-

firming operations towards n are done (if n = N then e2 = e3).

Since f(ea) = e′1
po′−−→ e′2 = f(e3) and f is an abstraction, we have ea

po−→ e3,
i.e. the value v is added to dn before the moment dn is confirmed empty. By con-
sistency (Definition 16), there is an in-between event e4 = (t, , (SetRemove, (dn, v), ()))

that removes this value, with ea
po−→ e4

po−→ e3. From the definition of the im-
plementation, such an event e4 is immediately preceded (with maybe other
SetRemove in-between) by an event ep = (t, , (Poll, (n), (v))). Now we argue
that we necessarily have ((e1, aNLWn), (ep, aWT)) ∈ pf. From the well-formedness
of pf, we know that (ep, aWT) has a preimage (pf is total and functional on its

45

range) and that this preimage outputs the value v. By consistency (Definition 16),
e1, with m(e1) ∈

{
GetTSO, RCASTSO, RFAATSO

}
, is the only RDMA operation with

output v. Thus (e1, aNLWn) is the preimage of (ep, aWT) by pf.

Finally we have g(e′1, aNLWn) = (e1, aNLWn)
pf−→ (ep, aWT)

ppo−−→ (e4, aMF)
ppo−−→

(e3, aMF)
ppo∗−−−→ (e2, aMF) = g(e′2, aWT), which shows g(pfg′) ⊆ pf; ppo+.

For pfp′ we have two cases. First, for a Put operation e′1, having ((e
′
1, aNRWn), (e

′
2, aWT)) ∈

pfp′ similarly implies g(e′1, aNRWn)
pf;ppo+−−−−−→ g(e′2, aWT) for the same reasons. Sec-

ond, for a successful remote RMW operation e′1, having ((e′1, aNRWn), (e
′
2, aWT)) ∈

pfp′, with g(e′1, aNRWn) = (e1, aNRWn) instead implies (e1, aNLWn)
pf;ppo+−−−−−→ g(e′2, aWT)

for the same reasons. This is because the semantics of polls synchronises with
the local write part of the operation, not with the remote write part. However,

we do have g(e′1, aNRWn)
ib−→ (e1, aNLWn) from the last component of ib, and thus

g(pfg′) ⊆ ib?; pf; ppo+.
Thus ib′ and hb′ are irreflexive, and G′ is {rdmawait

rmw}-consistent.

D The rdmatso
rmw Memory Model

In this section, we present an operational (§D.1) and declarative model (§D.2)
for rdmatso

rmw in the format of rdmatso as defined in [3], as well as an extension
of their equivalence proof (§D.3 onwards).

The declarative format used in §D.2 (based on [3]) is slightly different from
the one of C.1 (based on [4]), but they represent the same semantics.

D.1 Operational Semantics

Nodes and Threads. We write Node = {1..N} for the set of node identifiers,
and Tid for the set of thread identifiers. We write n (resp. t) to range over nodes
(resp. threads), and given some node n we write n to range over the set of all
other nodes Node \ {n}. Each thread runs on a particular node, so we write n(t)
for the node the thread belongs to.

Note that the semantics of [3] assumes that the remote node n of an operation
is different from the local node n (i.e. they ignore loopback). As we extend their
operational model, we keep their notations. However, as shown in [4], loopbacks
are possible and follow exactly the same semantics.

Memory. Although all nodes can directly access all memory locations, whether
an operation is towards local or remote memory is pivotal to our semantics, so
we are always careful to note the node to which a memory location belongs. We
write Locn for the set of locations local to node n, and Loc =

⊎
n Locn for the

set of all locations. We use Locn = Loc \ Locn and write xn, yn, zn for values in
Locn, respectively xn, yn, zn for Locn. When the node in question is sufficiently
clear, we elide the superscript and instead simply write x or x for local or remote
locations respectively.

46

Values and Expressions. The language of expressions is standard and elided.
We write v ∈ Val for values, with N ⊆ Val, and e ∈ Exp for expressions. We write
elocs(e) for the set of memory locations referenced in e, e[v/x] for the expression
obtained by substituting all references to location x in e with value v, and [[e]]
for the evaluation of e given it is closed, that is, elocs(e) = ∅. We use en for
expressions where elocs(en) ⊆ Locn

Commands and Programs. Commands are described by the Cn grammar
below. CPU operations (CComm) are assignment, assumption of the value of a
location, memory fence, compare-and-swap, and poll, which awaits the earliest
completion notification of a remote operations towards n.

RDMA operations (RComm) are either a ‘get’ of the form x := y which reads
a remote location y and writes its value to local location x, a ‘put’ (y := x) which
does the reverse, ‘remote-CAS’ (resp. ‘remote-FAA’) which executes a remote
compare-and-swap (resp. fetch-and-add), and ‘remote fence’ which ensures all
prior RDMA operations towards n complete before any later RDMA operations
towards n execute. We note rRMW to cover both kind of remote read-modify-
write operations, i.e. RCAS and RFAA.

Primitive operations (PComm) are CPU or RDMA operations, and com-
mands (Comm) are the no-op, primitive operations, sequential composition (ex-
ecutes the first command, then the second), non-deterministic choice (executes
one command or the other), and non-deterministic loop (executes the command
some finite, possibly zero number of times).

A program P consists of a map from threads to commands, such that each
t ∈ Tid is mapped to a command on n(t).

Comm ∋ Cn ::= skip | cn | Cn
1 ;C

n
2 | Cn

1 +Cn
2 | Cn∗ PComm ∋ cn ::= ccn | rcn

CComm∋ccn ::= x :=en | assume(x = v) | assume(x ̸= v) | mfence | x :=CAS(y, e1, e2) | poll(n)
RComm∋ rcn ::= x := y | y := x | x := RCAS(y, e1, e2) | x := RFAA(y, e) | rfence(n)

Store Buffers. To permit the weak behaviours of TSO (i.e. write-read reorder-
ing), we assign each thread a store buffer B(t), which is a FIFO queue containing
pending writes to memory by that thread. When a thread performs a CPU read,
it reads the most recent entry for that location in its store buffer, if there is
one, instead of the value in memory. The write at the head of the queue may be
flushed to memory at any time, and mfence and CAS wait until the store buffer
is empty before executing.

Queue Pairs. We follow the simplified operational model described in [3], and
therefore consider a queue-pair structure comprising three FIFO queues: pipe,
which contains pending or in-progress RDMA operations;wbR, the remote write
buffer, which contains pending writes to the memory of the remote node; and
wbL, the local write buffer, which contains pending writes to the memory of the
local node. The structure is shown in Fig. 17. Notice that under this simplified
model, the transition between local and remote node in pipe is continuous – we
do not explicitly model the transition between local (yellow) and remote (pink)
sides.

47

SBuff

wbL

pipe

wbR

M
em

o
ry

M
em

o
ry

Queue grows this way

Fig. 17: Simple queue-pair structure.

Remote Atomics. To model the behaviour of RDMA atomic operations, we as-
sign each node a remote atomic lock A(n), which is a boolean indicating whether
an RDMA atomic is currently in progress towards that node.

Transitions of the Operational Semantics. We describe the rules governing
the transitions between states, which comprise a program P, global memory M,
store buffers B, queue pairs QP and remote atomic locks A.

ϕ

P,M,B,A,QP ⇒ P′,M′,B′,A′,QP′

Transitions take the form shown on the
right, which should be read as: if ϕ is true,
then it is allowed for the system to transition
from the state described by P . . .QP to the
state described by P′ . . .QP′.

In practice, however, writing each transition rule in such a way would be
verbose and hard to understand, as most transitions do not affect every part
of the state. We can separate program transitions concerning P from hardware
transitions concerning M,B,A,QP. In order to synchronise the two where neces-
sary, we assign labels to certain transitions and require that a labelled program
transition only occur if it is matched by a hardware transition with the same
label (or vice-versa). Labels are of the form t : l where t is the thread executing
at that step and l ∈ Lab is the label of the operation. Silent transition, which
affect only the program (resp. only hardware) are written with the empty label,
ϵ, and may be taken independently.

Fig. 18 shows the top-level rules of the operational semantics which govern
this separation. We can henceforth consider the program and hardware transi-
tions separately.

Program Transitions. Fig. 19 shows the program and command transitions
(middle), labels (above) and expression rewriting rules (below). The transitions
for non-remote commands are familiar from TSO. Notice that the transitions
for get and put simply transition to skip with the relevant label; we know that
this means there will be some relevant transition in the hardware. The transition
to skip allows the program to continue executing, which we expect, as remote
operations are handled asynchronously by the NIC.

This is similarly the case for the rules for remote-CAS and remote-FAA.
The expressions involved are required to be closed, similarly to the rules for
local write and CAS; the expressions must be evaluated before the transition.

48

P
t:ε−−→ P′

P,M,B,A,QP ⇒ P′,M,B,A,QP

M,B,A,QP
t:ε−−→ M′,B′,A′,QP′

P,M,B,A,QP ⇒ P,M′,B′,A′,QP′

P
t:l−→ P′ M,B,A,QP

t:l−→ M′,B′,A′,QP′

P,M,B,A,QP ⇒ P′,M′,B′,A′,QP′

Fig. 18: rdmatso operational semantics with the program and hardware transi-
tions given in Fig. 19 and Fig. 20

It only makes sense to use a value, not an expression, in the label, since the
corresponding hardware transition will only be concerned with values.

Hardware Domains. The upper section of Fig. 20 shows the hardware domains
– that is, the states we are interested in other than the program. We have already
described memory, store buffers, remote atomic locks and queue pairs, but note
that the structures B, A, and QP are specifically maps from threads, nodes, and
both, respectively, to the particular structures.

A remote atomic lock is a boolean, ⊥ (available) or ⊤ (unavailable). A store
buffer is a sequence of CPU writes and RDMA operations. A queue pair is a
tuple of three sequences pipe, wbR, and wbL, where pipe may contain any
of the operations described below except for a confirmation notification, wbR

may contain NIC remote writes and NIC remote atomic writes, and wbL may
contain NIC local writes and confirmation notifications.

• yn := xn denotes a put operation where the value of local memory location x
is yet to be read (NIC local read);

• yn := v denotes a NIC remote write of value v to remote location y, which
occurs as the latter part of a put;

• ackp denotes the acknowledgement message returned by a put;
• xn := yn denotes a get operation where the value of the remote location y is
yet to be read (pending NIC remote read)

• xn := v denotes a NIC local write of value v to local location x, which occurs
as the latter part of a get or rRMW;

• RCAS(zn, xn, v, v′) denotes a remote CAS towards remote location x, with ex-
pected value v, update value v′, and returning to local location z;

• RFAA(zn, xn, v) similarly denotes a remote FAA towards x and returning to z,
with increment value v;

• yn :=A v denotes a NIC remote write specifically in the case of an rRMW – it
is necessary for this to be disambiguated from the NIC remote write of a put,
as we will see later;

• rfence(n) denotes a remote fence towards node n;
• cn denotes a confirmation of a successful NIC remote write.

Hardware Transitions. All remote commands enter the queue-pair pipe via
the thread’s store buffer. When the program takes a transition step labelled with

49

Program transitions: Prog
Tid:Lab⊎{ε}−−−−−−−→ Prog Command transitions:

Comm
Lab⊎{ε}−−−−−→ Comm

Lab ≜
⋃
n

Labn l∈Labn ≜


lW(xn, v), lR(xn, v), CASS(xn, v1, v2), CASF(x

n, v),
F, P(n), Get(xn, yn), Put(yn, xn), rF(n),
RCAS(y, xn, v1, v2), RFAA(y, x

n, v)

x, y∈Loc,
v, v1, v2∈Val


C1

l−→ C′
1

C1;C2
l−→ C′

1;C2 skip;C
ε−→ C

i ∈ {1, 2}
C1 + C2

ε−→ Ci C∗ ε−→ skip

C∗ ε−→ C;C∗
C ⇝ C′

C
ε−→ C′

elocs(e) = ∅

x := e
lW(x,[[e]])−−−−−→ skip

elocs(eold) = elocs(enew) = ∅ v ̸= [[eold]]

z := CAS(x, eold, enew)
CASF(x,v)−−−−−→ z := v

elocs(eold) = elocs(enew) = ∅

z := CAS(x, eold, enew)
CASS(x,[[eold]],[[enew]])−−−−−−−−−−−−−→ z := [[eold]] mfence

F−→ skip

x := y
Get(x,y)−−−−−→ skip y := x

Put(y,x)−−−−−→ skip

elocs(eold) = elocs(enew) = ∅ v = [[eold]] v′ = [[enew]]

z := RCAS(x, eold, enew)
RCAS(z,x,v,v′)−−−−−−−−→ skip

elocs(e) = ∅ v = [[e]]

z := RFAA(x, e)
RFAA(z,x,v)−−−−−−−→ skip rfence(n)

rF(n)−−−→ skip poll(n)
P(n)−−−→ skip

assume(x = v)
lR(x,v)−−−−→ skip

v ̸= v′

assume(x ̸= v′)
lR(x,v)−−−−→ skip

P(t)
l−→ C

P
t:l−→ P[t 7→ C]

x := e⇝ assume(y = v);x := e[v/y] for y ∈ elocs(e), v ∈ Val

z := CAS(x, eold, enew)⇝ assume(y = v); z := CAS(x, eold[v/y], enew) for y ∈ elocs(eold), v ∈ Val

z := CAS(x, eold, enew)⇝ assume(y = v); z := CAS(x, eold, enew[v/y]) for y ∈ elocs(enew), v ∈ Val

z := RCAS(x, eold, enew)⇝ assume(y = v); z := RCAS(x, eold[v/y], enew) for y ∈ elocs(eold), v ∈ Val

z := RCAS(x, eold, enew)⇝ assume(y = v); z := RCAS(x, eold, enew[v/y]) for y ∈ elocs(enew), v ∈ Val

z := RFAA(x, e)⇝ assume(y = v); z := RFAA(x, e[v/y]) for y ∈ elocs(e), v ∈ Val

Fig. 19: The rdmatso program and command transitions

50

a remote CAS or FAA, the hardware takes a transition with a matching label,
which adds that operation to the store buffer. The seventh transition rule allows
remote commands at the head of the store buffer to enter the pipe of a queue
pair, determined by their target node.

So far, we have seen that when an rRMW appears in the program, we can
expect there to be a hardware transition which adds it to the store buffer, and
later another hardware transition which removes it from the head of the store
buffer and adds it to the suitable queue pair.

The final hardware transition introduces the queue-pair transitions, indicated
by →sqp

4. When a particular queue pair takes a transition step, involving mem-
ory and the global remote atomic lock, the hardware takes a suitable correspond-
ing transition. The queue-pair transitions merely involve a particular subset of
the hardware states, so the relationship is straightforward. This separation is
purely made for clarity and simplification of the queue-pair transition rules.

Queue-Pair Transitions. From Fig. 17, recall that remote operations enter
the main pipe of the queue pair, then are suitably processed until they exit the
pipe, possibly adding a write to wbL or wbR (or both). Note that the pipe
grows to the left, so throughout, α contains operations which are later in the
program, while β contains earlier operations which have not yet completed.

The rules for remote fence, put, and get share a simple structure, where
the premise for a transition either requires the operation to be at the head of
the pipe sqp.pipe = α · (operation), or allows it to be in the middle of the
pipe sqp.pipe = α · (operation) · β, with some stipulation as to the operations
allowed in β. In the prior case, the operation never executes before another,
earlier operation; in the latter, it can execute before any operation in β which
was issued before it. There may also be some requirement that buffers wbL or
wbR contain no writes, due to PCIe guarantees: wbL ∈

{
cn
}∗

(wbL contains
only confirmation notifications) or wbR = ϵ (there are no operations in wbR).
Consider, for example, the first step of a put, which is a NIC local read described
by rule 2. The value of location x is read from memory, so long as wbL has no
pending writes and there are no other NIC local reads earlier in the pipe.

We can then describe the rules for rfence, put, and get at a high level:

Remote fence (rule 1) An rfence may be removed from the pipe once it reaches
the head (there are no earlier operations remaining to be processed). In com-
bination with the fact that no other transition rule allows a step to be taken
when there is an rfence later in the pipe, this enforces the behaviour that all
remote operations prior to an rfence complete before it, and all later ones
after it.

Put (rules 2-5) Rule 2: a NIC local read is performed, replacing the location
x with its value in memory. Rule 3: the NIC remote write is sent to wbR,
and an acknowledgement created in the pipe. Rule 4: the remote write is

4 SQP stands for simplified queue pair. We only considered the simplified three-buffer
queue pair, so this disambiguation is technically unnecessary, but we maintain the
notation for consistency with [3]

M∈Mem ≜ Loc → Val B∈SBMap ≜ λt ∈ Tid.SBuffn(t)

A∈RAMap ≜ λn. {⊥,⊤} QP∈SQPMap ≜ λt.
(
λn(t).SQPairnn

)
b∈SBuffn≜

{
xn:=v,yn:=xn,xn:=yn,RCAS(zn, xn, v, v′),RFAA(zn, xn, v),rfence(n)

}∗

sqp ∈ SQPairnn ≜ Pipenn ×WBRn
n ×WBLn

n

wbL∈WBLn
n ≜

{
cn, xn := v

}∗
wbR∈WBRn

n ≜
{
yn := v, yn :=A v

}∗

pipe ∈ Pipenn ≜

{
yn := xn, yn := v, yn :=A v, ackp, x

n := yn, xn := v,
RCAS(zn, xn, v, v′),RFAA(zn, xn, v),rfence(n)

}∗

B′= B[t 7→ (x := v) · B(t)]

M,B,A,QP
t:lW(x,v)−−−−−→ M,B′,A,QP

(M◁ B(t))(x) = v

M,B,A,QP
t:lR(x,v)−−−−−→ M,B,A,QP

B(t) = ε M(x) = v1

M,B,A,QP
t:CASS(x,v1,v2)−−−−−−−−−→ M[x 7→ v2],B,A,QP

B(t) = ε M(x) = v

M,B,A,QP
t:CASF(x,v)−−−−−−→ M,B,A,QP

B(t) = ε

M,B,A,QP
t:F−→ M,B,A,QP

B(t) = b · (x := v)

M,B,A,QP
t:ε−−→ M[x 7→ v],B[t 7→ b],A,QP

B(t)=b·rcn rcn∈
{
x := yn, yn := x, RCAS(z, x, v, v′), RFAA(z, x, v), rfence(n)

}
QP(t)(n)=sqp sqp′ = sqp[pipe 7→ rcn · sqp.pipe]

M,B,A,QP
t:ε−−→ M,B[t 7→ b],A,QP[t 7→ QP(t)[n 7→ sqp′]]

B′ = B[t 7→ (x := y) · B(t)]

M,B,A,QP
t:Get(x,y)−−−−−−→ M,B′,A,QP

B′ = B[t 7→ (y := x) · B(t)]

M,B,A,QP
t:Put(y,x)−−−−−−→ M,B′,A,QP

B′ = B[t 7→ RCAS(z, x, v, v′) · B(t)]

M,B,A,QP
t:RCAS(z,x,v,v′)−−−−−−−−−→ M,B′,A,QP

B′ = B[t 7→ RFAA(z, x, v) · B(t)]

M,B,A,QP
t:RFAA(z,x,v)−−−−−−−−→ M,B′,A,QP

B′ = B[t 7→ (rfence(n)) · B(t)]

M,B,A,QP
t:rF(n)−−−−→ M,B′,A,QP

QP(t)(n)=sqp sqp.wbL=α · cn sqp′=sqp[wbL 7→ α]

M,B,A,QP
t:P(n)−−−→ M,B,A,QP[t 7→ QP(t)[n 7→ sqp′]]

M,A,QP(t)(n) →sqp M
′,A′, sqp (Fig. 21)

M,B,A,QP
t:ε−→ M′,B,A′,QP[t 7→ QP(t)[n 7→ sqp]]

with (M◁ α)(x) ≜

{
v if α = β · (x := v) · − ∧ ∀v′. x := v′ ̸∈ β

M(x) if ∀v. x := v ̸∈ α

Fig. 20: rdmatso simplified hardware domains (above) and hardware transitions
(below)

52

sqp.pipe = α · (rfence(n))
M,A, sqp →sqp M,A, sqp[pipe 7→ α]

sqp.pipe = α · (y := x) · β wbL∈
{
cn

}∗

β ∈
{
y
′
:= v

′
, y

′
:=A v

′
, y′ := v

′
, x

′
:= y′, RCAS(z, x, v, v

′
), RFAA(z, x, v), ackp

}∗

M,A, sqp →sqp M,A, sqp[pipe 7→ α · (y := M(x)) · β]

sqp.pipe = α · (y := v) · β
β ∈

{
x
′
:= y′, x

′
:= v

′
, ackp

}∗

sqp
′
= sqp[pipe 7→ α · ackp · β][wbR 7→ (y := v) · sqp.wbR]

M,A, sqp →sqp M,A, sqp′

sqp.wbR = α · (y := v)

M,A, sqp →sqp M[y 7→ v],A, sqp[wbR 7→ α]

sqp.pipe = α · ackp
sqp

′
= sqp[pipe 7→ α][wbL 7→ cn · sqp.wbL]

M,A, sqp →sqp M,A, sqp′

sqp.pipe=α·(x := y)·β β∈
{
x
′
:= y′, x

′
:= v

′
, ackp

}∗

sqp.wbR=ε sqp
′
=sqp[pipe 7→ α · (x := M(y))·β]

M,A, sqp →sqp M,A, sqp′

sqp.pipe = α · (x := v)
sqp

′
= sqp[pipe 7→ α][wbL 7→ cn · (x := v) · sqp.wbL]

M,A, sqp →sqp M,A, sqp′

sqp.wbL = α · (x := v) · β β ∈
{
cn

}∗

sqp
′
= sqp[wbL 7→ α · β]

M,A, sqp →sqp M[x 7→ v],A, sqp′

sqp.pipe = α · RCAS(z, x, v, v′
) · β sqp.wbR = ϵ

A(n(x)) = ⊥ M(x) ̸= v β ∈
{
x
′
:= y′, x

′
:= v

′
, ackp

}∗

sqp
′
= sqp[pipe 7→ α · (z := M(x)) · β]
M,A, sqp →sqp M,A, sqp′

sqp.pipe = α · RCAS(z, x, v, v′
) · β sqp.wbR = ϵ

M(x) = v β ∈
{
x
′
:= y′, x

′
:= v

′
, ackp

}∗

A(n(x)) = ⊥ A′
= A[n(x) 7→ ⊤]

M,A, sqp →sqp M,A′
, sqp[pipe 7→ α · (z := v) · (x :=A v

′
) · β]

sqp.pipe = α · RFAA(z, x, v) · β sqp.wbR = ϵ
M(x) + v = v

′
β ∈

{
x
′
:= y′, x

′
:= v

′
, ackp

}∗

A(n(x)) = ⊥ A′
= A[n(x) 7→ ⊤]

M,A, sqp →sqp M,A′
, sqp[pipe 7→ α · (z := v) · (x :=A v

′
) · β]

sqp.pipe = α · (x :=A v) · β
wbR

′
= (x :=A v) · sqp.wbR

β ∈
{
x
′
:= y′, x

′
:= v

′
, ackp

}∗

sqp
′
= sqp[pipe 7→ α · β][wbR 7→ wbR

′
]

M,A, sqp →sqp M,A, sqp′

sqp.wbR = α · (x :=A v)
A′

= A[n(x) 7→ ⊥]
sqp

′
= sqp[wbR 7→ α]

M,A, sqp →sqp M[x 7→ v],A′
, sqp

′

Fig. 21: Queue-pair transitions of the simplified rdmatso operational semantics

53

committed to memory once it reaches the head of the queue. Rule 5: the
acknowledgement in the pipe is converted to a confirmation notification in
wbL, so that it can be polled.

Get (rules 6-8) Rule 6: a NIC remote read replaces the location y with its
value in memory. Rule 7: the NIC local write is sent to wbL, with a con-
firmation notification for the purpose of polling. Rule 8: the local write is
committed to memory once there are no pending earlier writes in the queue.

Now, consider the rules for rRMWs. These rules are more complicated due
to the need to check and update the remote atomic lock for the target node,
which we see as A(n(x)) = ⊥ (the remote atomic lock for the target node is
available), and A′ = A[n(x) 7→ ⊤] (update the remote atomic lock for the target
node to indicate it is busy). We also have distinct rules for success and failure of
RCAS, depending on whether the remote memory location holds the expected
value (M(x) = v or M(x) ̸= v).

The rules can then be interpreted as follows:

(Rule 9) A failed RCAS read – the remote memory location does not hold the
expected value. This read can only occur when the remote atomic lock is
available, otherwise it would violate the atomicity guarantee. The value of
x is read, and a NIC local write is added to the pipe to return that value to
z. This is then handled by the same rules as for a get. The remote atomic
lock is not obtained, since the remote location will not be written to.

(Rule 10) A successful RCAS read – the remote location contains the expected
value. Once again, this requires that the remote atomic lock be available, and
it is also obtained to ensure atomicity until the remote location is written
to. A NIC local write is added to the pipe (similarly to 9), and a NIC remote
atomic write to update the remote location is also added.

(Rule 11) The remote read of an RFAA – this is unconditionally successful.
It is very similar to a successful RCAS, but the value for the NIC remote
atomic write is calculated by adding v to the value of x in memory.

(Rule 12) A NIC remote atomic write in the pipe is processed into wbR sim-
ilarly to a regular NIC remote write.

(Rule 13) A NIC remote atomic write is committed to memory, and the remote
atomic lock is released.

D.2 Declarative Semantics

A declarative semantics, in contrast to an operational one, describes only the
events that occur in a system, not the state of the system itself. An execution
is represented by a graph, with various relations over events. For example, given
an event r, we say that it “reads-from” event w if r reads the value written to
memory by w. We write (w, r) ∈ rf in this case. We then constrain these relations
suitably to only allow execution graphs which make sense in the context of a
program: considering rf again, we would naturally only allow (w, r) ∈ rf if the
values of the read and write match.

54

Then, we know that an execution of a program is allowed if the graph of
the execution is consistent. Contrast this with the operational semantics: there,
our guarantee comes from the individual transition rules; here, it is due to the
overall structure of the graph.

Events and Executions. An execution is a graph comprising a set of events
and several relations over events; events are represented as graph nodes, and the
relations are edges. An event has a unique identifier ι, is created by a thread
t ∈ Tid, and has an event label l ∈ ELab which describes the event.

Definition 17 (Labels and events). Each event label is associated to a
node n. The set of event labels of node n is denoted by l ∈ ELabn, where l is a
tuple with one of the following forms:

• (CPU) local read: l = lR(xn, vr)

• (CPU) local write: l = lW(xn, vw)

• (CPU) CAS: l = CAS(xn, vr, vw)

• (CPU) memory fence: l = F

• (CPU) poll: l = P(n)

• NIC local read: l = nlR(xn, vr, n)
• NIC remote write: l = nrW(yn, vw)
• NIC remote read: l = nrR(yn, vr)
• NIC local write: l = nlW(xn, vw, n)
• NIC fence: l = nF(n)
• NIC atomic remote read:

l = narR(yn, vr)
• NIC atomic remote write:

l = narW(yn, vw)

The set of event labels are defined ELab ≜
⋃

n ELabn.
An event, e ∈ Event, is a triple (ι, t, l), where ι ∈ N, t ∈ Tid and l ∈ ELabn(t).

We distinguish between events associated with the CPU (left) or NIC (right),
with the prefix n used for all NIC event labels. Note that a put, get, or rRMW
is modelled by multiple events: a put x := y comprises a NIC local read event
of type nlR (on y) followed by a NIC remote write event nrW (on x); conversely
a get x := y comprises events of type nrR (on y) and nlW (on x). A successful
rRMW (either successful RCAS or RFAA) is modelled by three events of type
narR, narW and nlW, while a failed rRMW (RCAS only) is modelled by only
narR and nlW.

For a given label l, we write type(l), loc(l), vr(l), vw(l), n(l) and n(l) for the
type, location, value read or written, and local or remote node, where applicable.
For example, consider l = nlR(xn, vr, n):

• type(nlR(xn, vr, n)) = nlR
• loc(nlR(xn, vr, n)) = x
• vr(nlR(x

n, vr, n)) = vr

• vw(nlR(x
n, vr, n)) is undefined

• n(nlR(xn, vr, n)) = n
• n(nlR(xn, vr, n)) = n

We write ι(e), t(e), l(e) for the relevant constituents of an event tuple e =
(ι, t, l). We lift the functions on event labels to functions on events, for example
type(e) ≜ type(l(e)).

Difference with mowgli. The labels of this declarative semantics (à la [3])
roughly corresponds to the stamps of mowgli (à la [4]) in the main paper. E.g.

55

a NIC local read has a label nlR here and corresponds to the stamp (family)
aNLR in Fig. 9. However, there is one major discrepancy. The declarative seman-
tics of this section distinguishes between NIC remote writes performed by put
operations (label nrW) and performed by rRMW operations (label narW), while
they both correspond to the single stamp aNRWn.

The main reason is that this semantics, by decomposing operations into mul-
tiple events, creates a po ordering between the remote write and local write parts
of a (successful) remote RMW. As such, we cannot enforce a ppo ordering be-
tween the two parts (narW and nlW) as they might not finish in order, but we can
enforce a ppo ordering between the remote write of a put and later local writes
(nrW and nlW), making the semantics more straightforward. With mowgli, each
operation generates a single event, and there is no po ordering between subevents
of the same event. Thus we can add a dependency between aNRWn and aNLWn
(cell G10 in Fig. 9), and it will not create an internal dependency within the
same rRMW operation.

A secondary reason is that the two labels (nrW and narW) correspond to
different behaviours of the operational semantics. Making the distinction renders
the equivalence proof more tractable.

Issue and Observation Points. Some types of events do not occur instanta-
neously: for example, a local write event lW first enters the store before, before
later being committed to memory. We therefore distinguish between the point
at which an event is issued by the CPU or NIC, and the point at which it is
observed, when its effect becomes visible in memory. An event is instantaneous
if it either has no visible effect on memory, or if it affects memory immediately,
as is the case for a local CAS operation. For instantaneous events, the issue and
observation points coincide.

Notation. Once again, we follow and extend the notation of [3]. For a set A
and relations r, r1, r2, we write:

r+ for the transitive closure of r;

r−1 for the inverse of r;

r|A ≜ r ∩ (A×A) for the restriction of r to set A;

[A] ≜ {(a, a) | a ∈ A} for the identity relation

r1; r2 ≜ {(a, b) | ∃c.(a, c) ∈ r1 ∧ (c, b) ∈ r2} for relational composition;

r|imm ≜ r \ (r; r) for the immediate edges in r, when r is a strict partial
order.

For a set of events E, location x and label type X, we also define:

Ex ≜ {e ∈ E | loc(e) = x}, the events towards x;

E.X ≜ {e ∈ E | type(e) = X}, the events of type X;

E.R ≜ E.lR ∪ E.CAS ∪ E.nlR ∪ E.nrR ∪ E.narR, the set of reads;

E.W ≜ E.lW ∪ E.CAS ∪ E.nlW ∪ E.nrW ∪ E.narW, the set of writes;

E.Inst ≜ E \ (E.lW ∪ E.nlW ∪ E.nrW ∪ E.narW), the set of instantaneous
events.

56

Finally, we define the following relations:

Same-location: sloc ≜
{
(e, e′) ∈ Event2 | loc(e) = loc(e′)

}
Same-thread: sthd ≜

{
(e, e′) ∈ Event2 | t(e) = t(e′)

}
Same-queue-pair: sqp ≜

{
(e, e′) ∈ Event2 | t(e) = t(e′) ∧ n(e) = n(e′)

}
Note that these relations are all symmetric, and sqp ⊆ sthd. Given events E, we
write E.sloc for sloc|E , likewise for E.sthd and E.sqp.

Definition 18 (Pre-executions). A pre-execution is a tuple G = ⟨E, po, rf,mo, pf, nfo, rao⟩,
where:

• E ⊆ Event is the set of events and includes a set of initialisation events,
E0 ⊆ E, comprising a single write with label lW(x, 0) for each x ∈ Loc.

• po ⊆ E×E is the ‘program order’ relation defined as a disjoint union of strict
total orders, each ordering the events of one thread, with E0 × (E \E0) ⊆ po.

• rf ⊆ E.W × E.R is the ‘ reads-from’ relation on events of the same location
with matching values; i.e. (a, b) ∈ rf ⇒ (a, b) ∈ sloc ∧ vw(a)=vr(b). Moreover,
rf is total and functional on its range: every read in E.R is related to exactly
one write in E.W.

• mo ≜
⋃

x∈Loc mox is the ‘modification-order’, where each mox is a strict total
order on E.Wx with E0

x × (E.Wx \ E0
x) ⊆ mox describing the order in which

writes on x reach the memory.

• pf ⊆ (E.nlW ∪ E.nrW) × E.P is the ‘polls-from’ relation, relating earlier (in
program-order) NIC writes to later poll operations on the same queue pair; i.e.
pf ⊆ po∩ sqp. Moreover, pf is functional on its domain (every NIC write can
be be polled at most once), and pf is total and functional on its range (every
poll in E.P polls from exactly one NIC write).

• nfo ⊆ E.sqp is the ‘NIC flush order’, such that for all (a, b) ∈ E.sqp, if
a ∈ E.nlR, b ∈ E.nlW, then (a, b)∈nfo∪nfo−1, and if a ∈ (E.nrR∪E.narR), b ∈
(E.nrW ∪ E.narW), then (a, b) ∈ nfo ∪ nfo−1.

• rao ≜
⋃

n∈Node raon is the ‘ remote-atomic-order’, where each raon is a strict
total order on {e | e ∈ E.narR ∧ n(e) = n} describing the order in which re-
mote atomics towards n are executed.

The definitions of po, rf and mo are familiar from TSO, while pf and nfo are
introduced in [3]. As mentioned previously, nfo represents the PCIe guarantee
that a NIC local read flushes pending NIC remote writes on the same queue pair,
and likewise for NIC local reads/writes. We introduce rao, which totally orders
NIC remote atomic reads towards a given node and help enforce the rRMW
atomicity guarantee.

Derived Relations. Given a pre-execution ⟨E, po, rf,mo, pf, nfo, rao⟩, we define
the following derived relations:

• rb ≜ (rf−1;mo) \ [E] is the reads-before relation, relating each read r to writes
that are mo-after the write from which r reads.

57

• rf i ≜ [lW]; (rf ∩ sthd); [lR] is the rf-buffer relation, which includes rf edges
only for CPU operations on the same thread, which thus share a store buffer;

therefore when w
rf i−→ r, it may be that the write w is not yet visible (committed

to memory) when it is read by r, since CPU reads check the store buffer.

• rfe ≜ rf \ rf i is the rf i-complement: if w
rfe−→ r, then r only occurs after w is

observable.
• rbi ≜ [lR]; (rb ∩ sthd); [lW] is the rb-buffer relation, analogously.

• ar ≜ [narW]; (po|imm
−1

) is the atomic-write-to-read relation, connecting the
remote write of a successful rRMW to their corresponding read.

Note that these derived relations contain no additional information. We intro-
duce them for ease and brevity of notation.

Preserved Program Order. We identify which events in po are issued in
order, and which are observed in order. The observation point of an event is no
earlier than its issue point, so two events in po are only observed in order if they
are issued in order. Furthermore, when the po-earlier event is instantaneous, the
events are observed in order if and only if they are issued in order.

We therefore define two relations: ippo, the issue-preserved-program-order re-
lation, and oppo, the observation-preserved-program-order relation, where oppo ⊆
ippo ⊆ po. The tables in Fig. 22 show these relations. Each row indicates the
po-earlier event, while each column indicates that which is po-later. A cell la-
belled ✓ indicates the event pair is in ippo (resp. oppo) and must be issued (resp.
observed) in program order, while ✗ indicates they are not in ippo/oppo and may
be issued/observed out of program order. The label sqp indicates that the events
are in ippo/oppo if they are events on the same queue pair.

We can observe high-level reordering rules by looking at each quadrant of
the two tables, which partition the event pairs by their categorisation as CPU or
NIC events. The top left quadrant contains pairs of CPU events. Observe that
CPU events are always issued in program order, and only an earlier CPU write
may be observed out of order, as all other CPU events are instantaneous. The
bottom left quadrants shows that an earlier NIC event may always be issued
or observed after a later CPU event, matching our intuition that NIC events
execute concurrently, as if in a separate thread; conversely the top right shows
that earlier CPU events always complete before later NIC events. In the bottom
right quadrant, we can see that a pair of NIC events are only ordered if they are
on the same queue pair.

The relations ippo and oppo differ in only six cells. A CPU write may be
buffered and hence not observed by a later CPU read or poll (B1 and B5). Other
CPU writes and CAS or fence operations go via the store buffer, so earlier writes
will be observed first. Similarly, a remote fence may be observed before an earlier
NIC remote (atomic) write (resp. local), if that write is buffered in wbR (resp.
wbL) (G12 and I12, resp. K12). Finally, a po-later nlW may be observed before a
po-earlier narW (I11). This occurs specifically in the case where both are created
by the same rRMW, because the writes are sent to wbL and wbR respectively
and may be committed in either order.

58

Later in Program Order

ippo
CPU NIC

1 2 3 4 5 6 7 8 9 10 11 12

lR lW CAS F P nlR nrW narR narW nrR nlW nF

E
a
rl
ie
r
in

P
ro
g
ra
m

O
rd
er

C
P
U

A lR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B lW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C CAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N
IC

F nlR ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp sqp

G nrW ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp

H narR ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp

I narW ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp

J nrR ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp

K nlW ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp

L nF ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp sqp

Later in Program Order

oppo
CPU NIC

1 2 3 4 5 6 7 8 9 10 11 12

lR lW CAS F P nlR nrW narR narW nrR nlW nF

E
a
rl
ie
r
in

P
ro
g
ra
m

O
rd
er

C
P
U

A lR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B lW ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C CAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N
IC

F nlR ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp sqp

G nrW ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp ✗

H narR ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp

I narW ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp ✗ ✗

J nrR ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp

K nlW ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp ✗

L nF ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp sqp

Fig. 22: The rdmatso ordering constraints on ippo (above) and oppo (below),
where ✓ denotes that instructions are ordered (and cannot be reordered), ✗
denotes they are not ordered (and may be reordered), and sqp denotes they are
ordered iff they are on the same queue pair.

59

Definition 19 (Executions). A pre-execution G= ⟨E, po, rf,mo, pf, nfo, rao⟩
is well-formed if the following hold for all w, r, w1, w2, p2:

1) Poll events poll-from the oldest non-polled remote operation on the same
queue pair:

if w1 ∈ G.nlW ∪ G.nrW and w1
po∩sqp−−−−→ w2

pf−→ p2, then there exists p1 such

that w1
pf−→ p1

po−→ p2.
2) Each put (resp. get) operation corresponds to two events: a read and a write

with the read immediately preceding the write in po: 1) if r ∈G.nlR (resp.
r∈G.nrR), then (r, w)∈ po|imm for some w∈G.nrW (w∈G.nlW); and 2) if
w ∈G.nrW then (r, w)∈ po|imm for some r ∈G.nlR. The case w ∈ G.nlW is
handled by (6) below.

3) Read and write events of a put (resp. get) have matching values:
if (r, w) ∈ G.po|imm, type(r) ∈ {nlR, nrR} and type(w) ∈ {nlW, nrW}, then
vr(r) = vw(w).

4) Each rRMW operation corresponds to either an atomic remote read followed
by a local write, or an atomic remote read, followed by an atomic remote
write, followed by a local write: 1) if r ∈ G.narR then (r, w1) ∈ po|imm for
some w1 ∈G.narW ∪ G.nlW, and if w1 ∈G.narW then (w1, w2) ∈ po|imm for
some w2 ∈ G.nlW, and 2) if w1 ∈ G.narW then (r, w1) ∈ po|imm for some
r ∈ narR, and (w1, w2)∈po|imm for some w2 ∈ nlW. The case for w2 ∈ nlW

is handled by (6) below.
5) Remote atomic read and local write events of an rRMW have matching val-

ues: if (r, w) ∈ G.po|imm, type(r) = narR and type(w) = nlW, then vr(r) =
vw(w); and if (r, w1), (w1, w2) ∈ G.po|imm, type(r) = narR, type(w1) = narW

and type(w2) = nlW, then vr(r) = vw(w2).
6. (2) and (4) auxiliary in the case of w ∈ nlW. If w ∈ G.nlW then either:

1) (r, w) ∈ po|imm for some r ∈ G.nrR or
2) (r, w) ∈ po|imm for some r ∈ G.narR or
3) (r, w′), (w′, w) ∈ po|imm for some r ∈ G.narR and w′ ∈ G.narW.

An execution is a pre-execution (Def. 18) that is well-formed.

Given an execution G, we write G.E, G.mo, G.ippo and so forth to project the
components and derived relations of G. When the execution is question is clear,
we simply write E, mo or similar.

Definition 20 (rdmatso-consistency). An execution ⟨E, po, rf,mo, pf, nfo, rao⟩
is rdmatso-consistent iff 1) ib is irreflexive; and 2) ob is irreflexive, where:

ib ≜
(
ippo ∪ rf ∪ pf ∪ nfo ∪ rbi ∪ (ob; [Inst])

)+
(‘issued-before’)

ob ≜
(
oppo ∪ rfe ∪ ([nlW]; pf) ∪ nfo ∪ rb ∪mo ∪ rao ∪ (ar; rao) ∪ ([Inst]; ib)

)+
(‘observed-before’)

These relations extend ippo and oppo respectively to describe the issue and
observation orders across threads and nodes. They are required to be irreflexive,
i.e. an event cannot be issued or observed before itself.

60

The remaining components of ib are (a) rf: if w
rf−→ r then w was at least

issued (if not observed) before r – recall that if the read and write are both
CPU events on the same thread, w may not be observable; (b) pf: similarly

w
pf−→ p only if w was issued before p; (c) nfo: NIC events arrive in wbL/wbR

in the order they are issued; (d) rbi: if r
rbi−→ w, then r must be issued before w,

otherwise r would read from w or an mo-later w′; (e) ob; [Inst]: in general, an
event is observed no earlier than it is issued, and for an instantaneous event, the

two points coincide. Thus e
ob−→ e′ implies e

ib−→ e′ when e′ is instantaneous. As
noted in [3], this last component is optional and does not modify the semantics.

On the other hand, for ob we have (a) rfe: if w
rfe−→ r then w was committed

to memory before r, since r cannot read from the store buffer of another thread;
(b) [nlW]; pf: NIC local writes cannot be polled until they are committed to
memory; (c) nfo: NIC events are observed in the same order they arrive in

wbL/wbR; (d) rb: if r
rb−→ w, then w was not observed before r, otherwise it

would have been committed to memory before r; (e) mo: if w
mo−−→ w′, then w

was observed in memory before w′; (f) rao: remote atomic reads are (issued and)

completed in the defined order; (g) ar; rao: if w
ar−→ r

rao−−→ r′, then we have that
r and w are the read and write of the same rRMW operation, thus w must be
observed before the rao-later r′ to ensure atomicity. (h) [Inst]; ib: by a similar
logic to above, we know that the ib-earlier instantaneous event is also observed
earlier, since its issue and observation points coincide.

Semantics of a Program. Given a program P, we can generate an event graph
(E, po), by a standard process, which we describe below. We then choose any
rf,mo, pf, nfo, rao such that the execution is consistent. The semantics of P are
the set of consistent executions of P.

Thread to Event Graph. Given a thread identifier t ∈ Tid and a sequence of
labels l1, . . . , ln ∈ ELab, we define the event graphs of t as ({e1, . . . , en} , po) ∈
Gt(l1, . . . , ln) where: (a) l(ei) = li for all 1 ≤ i ≤ n; (b) ι(ei) ̸= ι(ej) for all
1 ≤ i < j ≤ n; (c) t(ei) = t for all 1 ≤ i ≤ n; (d) po = {(ei, ej) | 1 ≤ i < j ≤ n}.

Initial Event Graph. Given a set of locations Loc, we define Ginit = (E0, ∅),
such that for each x ∈ Loc there is exactly one e ∈ E0 with l(e) = lW(x, 0),
and every event in E0 has a unique identifier. We call E0 the set of initialisation
events.

Sequential Composition. For two event graphs G1 and G2, we define their
sequential composition G1;G2 = (E, po) where

E ≜ G1.E ⊎G2.E

po ≜ G1.po ∪G2.po ∪ (G1.E ×G2.E)

Note that all events in G2 are ordered po-after every event in G1. Sequential
composition is defined only where the set of events of each graph are disjoint,
i.e. G1.E ∩G2.E = ∅.

61

Parallel Composition. We define parallel composition by G1 ∥ G2 = (E, po)
where

E ≜ G1.E ⊎G2.E

po ≜ G1.po ∪G2.po

Note that the events of each graph are not po-ordered with respect to one an-
other. We also require that the event sets be disjoint. As this operation is com-
mutative and associative, it is straightforward to lift it to sets of graphs, which
we denote by ∥ G, where G is a set of event graphs.

Program to Event Graph. A program P generates G if G = Ginit; (∥t∈Tid Gt)
and there is a set of sequences st ∈ S such that P(t)↣ st and Gt ∈ Gt(st) for
all t ∈ Tid.

The operation C ↣ s relates a sequential program C to a sequence of labels
s it generates. The definition is standard and show in Fig. 23. Note that RDMA
operations generate multiple events, and for local and remote CAS operations,
we distinguish between success and failure cases.

Theorem 7. The operational and declarative semantics of rdmatso
rmw are equiv-

alent.

Proof. See Appendix D.3 onwards, extending the proof of [3].

D.3 Annotated Labels and Inference Rules

On top of the 12 labels presented in Appendix D.2, we create six new labels:
Put(y, x), Get(x, y), RCAS(z, x, v, u), RFAA(z, x, u), nlEX(n), and nrEX(n). These
labels can also be used to create events (when bundled with an event identifier
and a thread identifier).

We note Eext the extended set of all events, including the six new labels.

Recall that R = lR∪CAS∪nlR∪nrR∪narR ⊆ Eext and W = lW∪CAS∪nlW∪
nrW ∪ narW ⊆ Eext. We also note nEX = nlEX ∪ nrEX and rRMW = RCAS ∪ RFAA.

For annotated labels, we reuse most names from labels, but they are different
entities. For instance we note r ∈ lR for an event with label lR, while λ = lR⟨. . .⟩
is an annotated label.

We use type(λ) to denote the type of the annotated label (lR, lW, CAS, F, Push,
NIC, nlR, nrR, nlW, nrW, CN, P, nF, B, E). We use r(λ), w(λ), u(λ), a(λ), f(λ), p(λ), e(λ), . . .
to access the elements of a λ ∈ ALabel where applicable. Also, we note t(λ) for
the thread of the first argument of λ.

The annotated program transitions (Fig. 25) use an additional annotated
label CASF⟨r, w⟩ with r ∈ lR and w ∈ W to represent a failed CAS operation.
This case is then translated into two labels (a memory fence and a local read)
when creating a path in §D.4. Also, note that the annotated domains (e.g. the
store buffers and the queue pairs) contain events, not annotated labels.

62

C ⇝ C′ C′ ↣ s

C ↣ s

C1 ↣ s1 C2 ↣ s2

C1;C2 ↣ s1, s2

elocs(e) = ∅
x := e↣ lW(x, [[e]])

elocs(eold) = elocs(enew) = ∅
z := [[eold]]↣ s

z := CAS(x, eold, enew)↣ CAS(x, [[eold]], [[enew]]), s

elocs(eold) = elocs(enew) = ∅
v ̸= [[eold]] z := v↣ s

z := CAS(x, eold, enew)↣ F, lR(x, v), s mfence↣ F

assume(x = v)↣ lR(x, v)

v′ ̸= v

assume(x ̸= v)↣ lR(x, v′)

x := yn ↣ nrR(yn, v), nlW(x, v, n) yn := x↣ nlR(x, v, n), nrW(yn, v)

rfence(n)↣ nF(n) poll(n)↣ P(n) skip↣ ϵ

elocs(eold) = elocs(enew) = ∅ v ̸= [[eold]]

z := RCAS(xn, eold, enew)↣ narR(xn, v), nlW(z, v, n)

elocs(eold) = elocs(enew) = ∅
z := RCAS(xn, eold, enew)↣ narR(xn, [[eold]]), narW(x

n, [[enew]]), nlW(z, [[eold]], n)

elocs(e) = ∅ v′ = v + [[e]]

z := RFAA(xn, e)↣ narR(xn, v), narW(xn, v′), nlW(z, v, n)

Fig. 23: Label Sequences Construction

63

initialisation. Given a program P, let

M0 ∈ AMem s.t. ∀x ∈ Loc. M0(x) = initx with l(initx) ≜ lW(x, 0)

b0 ∈ ASBuff b0 ≜ ε

B0 ∈ ASBMap B0 ≜ λt.b0
A0 ∈ RAMap A0 ≜ λt.⊥
qp0 ∈ AQPair qp0 ≜ ⟨ε, ε, ε⟩
QP0 ∈ AQPMap QP0 ≜ λt.λn.qp0

64

λ ∈ ALabel

λ ≜ | lR⟨r, w⟩ where r ∈ lR, w ∈ W, eqloc&v(r, w)

| lW⟨w⟩ where w ∈ lW

| CAS⟨u,w⟩ where u ∈ CAS, w ∈ W, eqloc&v(u,w)

| F⟨f⟩ where f ∈ F

| Push⟨a⟩ where a ∈ (Put ∪ Get ∪ RCAS ∪ RFAA ∪ nF)

| NIC⟨a⟩ where a ∈ (Put ∪ Get ∪ RCAS ∪ RFAA ∪ nF)

| nlR⟨r, w, a, w′⟩ where r ∈ nlR, w ∈ W, a ∈ Put, w′ ∈ nrW, eqloc&v(r, w),

locr(a) = loc(r), locw(a) = loc(w′), vr(r) = vw(w
′)

| nrR⟨r, w, a, w′⟩ where r ∈ nrR, w ∈ W, a ∈ Get, w′ ∈ nlW, eqloc&v(r, w),

locr(a) = loc(r), locw(a) = loc(w′), vr(r) = vw(w
′)

| narR⟨r, w, a, w′, w′′⟩ where r ∈ narR, w ∈ W, a ∈ RRMW, w′ ∈ nlW, w′′ ∈ narW,

eqloc&v(r, w), locr(a) = loc(r) = loc(w′′),

locw(a) = loc(w′), vr(r) = vw(w
′),

a ∈ RCAS =⇒ vr(r) = ve(a) ∧ vw(w
′′) = vu(a)

a ∈ RFAA =⇒ vw(w
′′) = vr(r) + v(a)

| naF⟨r, w, a, w′⟩ where r ∈ narR, w ∈ W, a ∈ rRMW, w′ ∈ nlW, eqloc&v(r, w),

locr(a) = loc(r), locw(a) = loc(w′),

vr(r) = vw(w
l), vr(r) ̸= ve(a)

| nlW⟨w, e⟩ where w ∈ nlW, e ∈ nlEX, sameqp(w, e)

| nrW⟨w, e⟩ where w ∈ nrW, e ∈ nrEX, sameqp(w, e)

| narW⟨w⟩ where w ∈ narW

| CN⟨e⟩ where e ∈ nrEX

| P⟨p, e⟩ where p ∈ P, e ∈ nEX, sameqp(p, e)

| nF⟨f⟩ where f ∈ nF

| B⟨w⟩ where w ∈ W
| E⟨t⟩ where t ∈ Tid

eqloc&v(r, w) ≜ loc(r) = loc(w) ∧ vr(r) = vw(w)

sameqp(e, e′) ≜ t(e) = t(e′) ∧ n(e) = n(e′)

Fig. 24: Annotated Labels

65

Program transitions: Prog
ALabel⊎{CASF}−−−−−−−−→ Prog

Command transitions: Comm
ALabel⊎{CASF}−−−−−−−−→ Comm

C1
λ−→ C′

1

C1;C2
λ−→ C′

1;C2 skip;C
E⟨t⟩−−→ C

i ∈ {1, 2}

C1 + C2
E⟨t⟩−−→ Ci C∗ E⟨t⟩−−→ skip

C∗ E⟨t⟩−−→ C;C∗
C ⇝ C′

C
E⟨t⟩−−→ C′

elocs(e) = ∅ w = (ι, t, lW(x, [[e]]))

x := e
lW⟨w⟩−−−→ skip

elocs(eold) = elocs(enew) = ∅ v ̸= [[eold]] r = (ι, t, lR(x, v))

z := CAS(x, eold, enew)
CASF⟨r,w⟩−−−−−−→ z := v

elocs(eold) = elocs(enew) = ∅ u = (ι, t, CAS(x, [[eold]], [[enew]]))

z := CAS(x, eold, enew)
CAS⟨u,w⟩−−−−−→ z := [[eold]]

f = (ι, t, F)

mfence
F⟨f⟩−−−→ skip

a = (ι, t, Get(x, y))

x := y
Push⟨a⟩−−−−→ skip

a = (ι, t, Put(y, x))

y := x
Push⟨a⟩−−−−→ skip

a = (ι, t, nF(n))

rfence(n)
Push⟨a⟩−−−−→ skip

elocs(eold) = elocs(enew) = ∅
v = [[eold]] u = [[enew]] a = (ι, t, RCAS(z, x, v, u))

z := RCAS(x, eold, enew)
Push⟨a⟩−−−−→ skip

elocs(e) = ∅ u = [[e]] a = (ι, t, RFAA(z, x, u))

z := RFAA(x, e)
Push⟨a⟩−−−−→ skip

p = (ι, t, P(n))

poll(n)
P⟨p,e⟩−−−−→ skip

r = (ι, t, lR(x, v))

assume(x = v)
lR⟨r,w⟩−−−−→ skip

v ̸= v′ r = (ι, t, lR(x, v′))

assume(x ̸= v)
lR⟨r,w⟩−−−−→ skip

P(t(λ))
λ−→ C

P
λ−→ P[t(λ) 7→ C]

Fig. 25: rdmatso program and command transitions for the annotated semantics

66

M ∈ AMem ≜ {m ∈ Loc → W | ∀x ∈ Loc.loc(m[x]) = x} B ∈ ASBMap ≜ Tid → ASBuff

A∈RAMap ≜ λn. {⊥,⊤} QP ∈ AQPMap ≜ Tid → (Node → AQPair)

b ∈ ASBuff ≜ (lW ∪ Get ∪ Put ∪ nF ∪ RCAS ∪ RFAA)∗ sqp ∈ AQPair ≜ APipe× AWBR× AWBL

pipe ∈ APipe ≜ (Get ∪ Put ∪ nF ∪ nrW ∪ narW ∪ nrEX ∪ nlW ∪ RCAS ∪ RFAA)∗

wbR ∈ AWBR ≜ (nrW, narW)∗ wbL ∈ AWBL ≜ (nlW ∪ nlEX ∪ nrEX)∗

B′ = B[t(w) 7→ w · B(t(w))]

M,B,A,QP
lW⟨w⟩−−−→ M,B′,A,QP

(M ◀ B(t(r)))(loc(r)) = w vr(r) = vw(w)

M,B,A,QP
lR⟨r,w⟩−−−−→ M,B,A,QP

B(t(u)) = ε M(loc(u)) = w vr(u) = vw(w)

M,B,A,QP
CAS⟨u,w⟩−−−−−→ M[x 7→ u],B,A,QP

B(t(f)) = ε

M,B,A,QP
F⟨f⟩−−−→ M,B,A,QP

B′ = B[t(a) 7→ a · B(t(a))]

M,B,A,QP
Push⟨a⟩−−−−→ M,B′,A,QP

B(t(w)) = b · w w ∈ lW

M,B,A,QP
B⟨w⟩−−−→ M[x 7→ w],B[t(w) 7→ b],A,QP

B(t(a)) = b · a a /∈ lW QP(t(a))(n(a)) = qp qp′ = qp[pipe 7→ a · qp.pipe]

M,B,A,QP
NIC⟨a⟩−−−−→ M,B[t(a) 7→ b],A,QP[t(a) 7→ QP(t(a))[n(a) 7→ qp′]]

QP(t(p))(n(p)) = qp qp.wbL = α · e e ∈ nEX qp′ = qp[wbL 7→ α]

M,B,A,QP
P⟨p,e⟩−−−−→ M,B,A,QP[t(p) 7→ QP(t(p))[n(p) 7→ qp′]]

M,A,QP(t(λ))(n)
λ−→sqp M

′,A′, qp

M,B,A,QP
λ−→ M′,B,A′,QP[t(λ) 7→ QP(t(λ))[n 7→ qp]]

with (M ◀ α)(x) =


M[x] α = ε

w α = w · β ∧ w ∈ W ∧ loc(w) = x

(M ◀ β)(x) α = e · β ∧ (e ̸∈ W ∨ loc(e) ̸= x)

Fig. 26: rdmatso hardware domains and hardware transitions for the annotated
semantics

67

pipe = α · f f = (ι, t, nF(n))

M,A, ⟨pipe,wbR,wbL⟩
nF⟨f⟩−−−→sqp M,A, ⟨α,wbR,wbL⟩

pipe = α · a · β a = (ιa, t, Put(y, x)) M(x) = w r = (ιr, t, nlR(x, vw(w), n(y)))
w

′
= (ιw′ , t, nrW(y, vw(w))) β ∈ (nrW ∪ narW ∪ Get ∪ nlW ∪ RCAS ∪ RFAA ∪ nrEX)

∗
wbL ∈ nEX

∗

M,A, ⟨pipe,wbR,wbL⟩
nlR⟨r,w,a,w′⟩−−−−−−−−−→sqp M,A, ⟨α · w′ · β,wbR,wbL⟩

pipe = α · w · β w = (ιw, t, nrW(y, v)) e = (ιe, t, nrEX(n(y))) β ∈ (Get ∪ nlW ∪ nrEX)
∗

M,A, ⟨pipe,wbR,wbL⟩
nrW⟨w,e⟩−−−−−−→sqp M,A, ⟨α · e · β,w · wbR,wbL⟩

wbR = α · w w ∈ nrW

M,A, ⟨pipe,wbR,wbL⟩
B⟨w⟩−−−→sqp M[loc(w) 7→ w],A, ⟨pipe, α,wbL⟩

pipe = α · e e ∈ nrEX

M,A, ⟨pipe,wbR,wbL⟩
CN⟨e⟩−−−−→sqp M,A, ⟨α,wbR, e · wbL⟩

pipe = α · a · β a = (ιa, t, Get(x, y)) M(y) = w r = (ιr, t, nrR(y, vw(w)))
w

′
= (ιw′ , t, nlW(x, vw(w), n(y))) β ∈ (Get ∪ nlW ∪ nrEX)

∗
wbR = ε

M,A, ⟨pipe,wbR,wbL⟩
nrR⟨r,w,a,w′⟩−−−−−−−−−→sqp M,A, ⟨α · w′ · β,wbR,wbL⟩

pipe = α · w w = (ιw, t, nlW(x, v, n)) e = (ιe, t, nlEX(n))

M,A, ⟨pipe,wbR,wbL⟩
nlW⟨w,e⟩−−−−−−→sqp M,A, ⟨α,wbR, e · w · wbL⟩

wbL = α · w · β w ∈ nlW β ∈ nEX
∗

M,A, ⟨pipe,wbR,wbL⟩
B⟨w⟩−−−→sqp M[loc(w) 7→ w],A, ⟨pipe,wbR, α · β⟩

pipe = α · a · β wbR = ε M(x) = w
vw(w) ̸= v A(n(x)) = ⊥ a = (ιa, t, RCAS(z, x, v, u))

r = (ιr, t, narR(x, vw(w))) w
′
= (ιw′ , t, nlW(z, vw(w), n(x))) β ∈ (Get ∪ nlW ∪ nrEX)

∗

M,A, ⟨pipe,wbR,wbL⟩
naF⟨r,w,a,w′⟩−−−−−−−−−→sqp M,A, ⟨α · w′ · β,wbR,wbL⟩

pipe = α · a · β wbR = ε M(x) = w
vw(w) = v A(n(x)) = ⊥ a = (ιa, t, RCAS(z, x, v, u)) r = (ιr, t, narR(x, vw(w)))
w

′′
= (ιw′′ , t, narW(x, u)) w

′
= (ιw′ , t, nlW(z, vw(w), n(x))) β ∈ (Get ∪ nlW ∪ nrEX)

∗

M,A, ⟨pipe,wbR,wbL⟩
narR⟨r,w,a,w′,w′′⟩−−−−−−−−−−−−−→sqp M,A[n(x) 7→ ⊤], ⟨α · w′ · w′′ · β,wbR,wbL⟩

pipe = α · a · β wbR = ε M(x) = w
vw(w) + v = u A(n(x)) = ⊥ a = (ιa, t, RFAA(z, x, v)) r = (ιr, t, narR(x, vw(w)))

w
′′

= (ιw′′ , t, narW(x, u))) w
′
= (ιw′ , t, nlW(z, vw(w))) β ∈ (Get ∪ nlW ∪ nrEX)

∗

M,A, ⟨pipe,wbR,wbL⟩
narR⟨r,w,a,w′,w′′⟩−−−−−−−−−−−−−→sqp M,A[n(x) 7→ ⊤], ⟨α · w′ · w′′ · β,wbR,wbL⟩

pipe = α · w · β β ∈ (Get ∪ nlW ∪ nrEX)
∗

w = (ιw, t, narW(x, v))

M,A, ⟨pipe,wbR,wbL⟩
narW⟨w⟩−−−−−→sqp M,A, ⟨α · β,w · wbR,wbL⟩

wbR = α · w w = (ιw, t, narW(x, v))

M,A, ⟨pipe,wbR,wbL⟩
B⟨w⟩−−−→sqp M[loc(w) 7→ w],A[n(x) 7→ ⊥], ⟨pipe, α,wbL⟩

Fig. 27: Annotated 3 Buffers NIC Semantics

68

D.4 Paths, Gluing, and Other Definitions

We define a path as: π ∈ Path ≜ (ALabel \ E⟨t⟩)∗
We define Annotated Operational Semantics Gluing with the following rules.

P
E⟨t⟩−−→ P′

P,M,B,A,QP, π ⇒ P′,M,B,A,QP, π

P
λ−→ P′ M,B,A,QP

λ−→ M′,B′,A,QP′

λ ∈ (lR ∪ lW ∪ CAS ∪ F ∪ Push ∪ P) fresh(λ, π)

P,M,B,A,QP, π ⇒ P′,M′,B′,A,QP′, λ · π

M,B,A,QP
λ−→ M′,B′,A′,QP′

λ ∈ (NIC ∪ nlR ∪ nrR ∪ nlW ∪ nrW ∪ naF ∪ narR ∪ narW ∪ CN ∪ nF ∪ B)
fresh(λ, π)

P,M,B,A,QP, π ⇒ P,M′,B′,A′,QP′, λ · π

P
CASF⟨r,w⟩−−−−−−→ P′ λ1 = F⟨(ι, t(r), F)⟩ λ2 = lR⟨r, w⟩

M,B,A,QP
λ1−→ M,B,A,QP

λ2−→ M,B,A,QP fresh(λ1, π) fresh(λ2, π)

P,M,B,A,QP, π ⇒ P′,M,B,A,QP, λ2 · λ1 · π

Two annotated labels are non-conflicting (λ1 ▷◁ λ2) if they are of a different
type or if their relevant arguments are disjoints. An annotated label is fresh if it
does not conflict with any previous annotated label.

Relevant : ALabel → 2E
ext

Relevant(lR⟨r, ⟩) ≜ {r}
Relevant(lW⟨w⟩) ≜ {w}

Relevant(CAS⟨u, ⟩) ≜ {u}
Relevant(F⟨f⟩) ≜ {f}

Relevant(Push⟨a⟩) ≜ {a}
Relevant(NIC⟨a⟩) ≜ {a}

Relevant(nlR⟨r, , a, w′⟩) ≜ {r, a, w′}
Relevant(nrR⟨r, , a, w′⟩) ≜ {r, a, w′}
Relevant(naF⟨r, , a, w′⟩) ≜ {r, a, w′}

Relevant(narR⟨r, , a, w′′, w′⟩) ≜ {r, a, w′, w′′}
Relevant(narW⟨w⟩) ≜ {w}
Relevant(nlW⟨w, e⟩) ≜ {w, e}
Relevant(nrW⟨w, e⟩) ≜ {w, e}

Relevant(CN⟨e⟩) ≜ {e}
Relevant(P⟨p, e⟩) ≜ {p, e}
Relevant(nF⟨f⟩) ≜ {f}
Relevant(B⟨w⟩) ≜ {w}
Relevant(E⟨ ⟩) ≜ {}

λ1 ▷◁ λ2 ≜ type(λ1) ̸= type(λ2) ∨Relevant(λ1) ∩Relevant(λ2) = ∅

69

fresh(λ, π) ≜ ∀λ′ ∈ π, λ ▷◁ λ′

nodup(π) ≜ ∀π2, λ, π1. π = π2 · λ · π1 =⇒ fresh(λ, π1)

Relevant(λ) are the arguments that are important to consider to avoid
duplicating events. The excluded events are the write operations we lookup when
reading. For instance:

• Having both lR⟨r1, w⟩ and lR⟨r2, w⟩ during an execution is fine, since w can
be looked up any number of time.

• Having both nlR⟨r1, w1, a, e1⟩ and nlR⟨r2, w2, a, e2⟩ during an execution is
problematic, since it means the put operation a is being run twice.

Completeness.

complete(π) ≜ ∀a,w′, e, r, w, f, w′′.

lW⟨w⟩ ∈ π =⇒ B⟨w⟩ ∈ π

∧ Push⟨a⟩ ∈ π =⇒ NIC⟨a⟩ ∈ π

∧ NIC⟨f⟩ ∈ π ∧ f ∈ nF =⇒ nF⟨f⟩ ∈ π

∧ NIC⟨a⟩ ∈ π ∧ a ∈ Put =⇒ ∃r, w,w′. nlR⟨r, w, a, w′⟩ ∈ π

∧ NIC⟨a⟩ ∈ π ∧ a ∈ Get =⇒ ∃r, w,w′. nrR⟨r, w, a, w′⟩ ∈ π

∧ NIC⟨a⟩ ∈ π ∧ a ∈ RFAA =⇒ ∃r, w,w′. narR⟨r, w, a, w′, w′′⟩ ∈ π

∧ NIC⟨a⟩ ∈ π ∧ a ∈ RCAS =⇒
(

∃r, w,w′. naF⟨r, w, a, w′⟩ ∈ π
∨ ∃r, w,w′, w′′. narR⟨r, w, a, w′, w′′⟩ ∈ π

)
∧ nlR⟨r, w, a, w′⟩ ∈ π =⇒ ∃e. nrW⟨w′, e⟩ ∈ π

∧ nrR⟨r, w, a, w′⟩ ∈ π =⇒ ∃e. nlW⟨w′, e⟩ ∈ π

∧ narR⟨r, w, a, w′, w′′⟩ ∈ π =⇒ narW⟨w′′⟩ ∈ π

∧ narR⟨r, w, a, w′, w′′⟩ ∈ π =⇒ ∃e. nlW⟨w′, e⟩ ∈ π

∧ naF⟨r, w, a, w′⟩ ∈ π =⇒ ∃e. nlW⟨w′, e⟩ ∈ π

∧ nlW⟨w, e⟩ ∈ π =⇒ B⟨w⟩ ∈ π

∧ nrW⟨w, e⟩ ∈ π =⇒ B⟨w⟩ ∈ π ∧ CN⟨e⟩ ∈ π

∧ narW⟨w⟩ ∈ π =⇒ B⟨w⟩ ∈ π

Informal: every pending operation is done and (most) buffers are empty. Note
that some nEX (i.e., completion notifications) might still be in wbL.

For a path π without duplicate (e.g. if nodup(π) holds), we define the total
ordering of its annotated labels as follows. Note that the early part of the path
is on the right.

λ1 ≺π λ2 ≜ ∃π1, π2, π3 s.t. π = π3 · λ2 · π2 · λ1 · π1

70

Backward Completeness. (with ordering)

backComp(π) ≜ ∀a,w′, e, r, w, f, p, w′′.

B⟨w⟩ ∈ π =⇒


lW⟨w⟩ ≺π B⟨w⟩

∨ ∃e.nlW⟨w, e⟩ ≺π B⟨w⟩
∨ ∃e.nrW⟨w, e⟩ ≺π B⟨w⟩
∨ ∃e.narW⟨w⟩ ≺π B⟨w⟩


∧ NIC⟨a⟩ ∈ π =⇒ Push⟨a⟩ ≺π NIC⟨a⟩
∧ nF⟨f⟩ ∈ π =⇒ NIC⟨f⟩ ≺π nF⟨f⟩
∧ nlR⟨r, w, a, w′⟩ ∈ π =⇒ NIC⟨a⟩ ≺π nlR⟨r, w, a, w′⟩
∧ nrR⟨r, w, a, w′⟩ ∈ π =⇒ NIC⟨a⟩ ≺π nrR⟨r, w, a, w′⟩
∧ naF⟨r, w, a, w′⟩ ∈ π =⇒ NIC⟨a⟩ ≺π naF⟨r, w, a, w′⟩
∧ narR⟨r, w, a, w′, w′′⟩ ∈ π =⇒ NIC⟨a⟩ ≺π narR⟨r, w, a, w′, w′′⟩
∧ nrW⟨w′, e⟩ ∈ π =⇒ ∃r, w, a. nlR⟨r, w, a, w′⟩ ≺π nrW⟨w′, e⟩

∧ nlW⟨w′, e⟩ ∈ π =⇒


∃r, w, a. nrR⟨r, w, a, w′⟩ ≺π nlW⟨w′, e⟩

∨ ∃r, w, a. naF⟨r, w, a, w′⟩ ≺π nlW⟨w′, e⟩

∨ ∃r, w, a, w′′.

(
narR⟨r, w, a, w′, w′′⟩
≺π narW⟨w′′⟩ ≺π nlW⟨w′, e⟩

)


∧ narW⟨w′⟩ ∈ π =⇒ ∃r, w, a, w′′.narR⟨r, w, a, w′, w′′⟩ ≺π narW⟨w′⟩
∧ CN⟨e⟩ ∈ π =⇒ ∃w. nrW⟨w, e⟩ ≺π CN⟨e⟩

∧ P⟨p, e⟩ ∈ π =⇒
(

∃w. nlW⟨w, e⟩ ≺π B⟨w⟩ ≺π P⟨p, e⟩
∨ CN⟨e⟩ ≺π P⟨p, e⟩

)

Poll Order.

pollOrder(π) ≜ ∀e1, e2.


sameqp(e1, e2)

∧ λ1 ∈ {nlW⟨ , e1⟩,CN⟨e1⟩}
∧ λ2 ∈ {nlW⟨ , e2⟩,CN⟨e2⟩}
∧ λ1 ≺π λ2

∧ P⟨ , e2⟩ ∈ π

 =⇒ P⟨ , e1⟩ ≺π P⟨ , e2⟩

71

Flush Order.

bufFlushOrd(π) ≜

∀w1, w2 ∈ lW.

(
t(w1) = t(w2) =⇒
(B⟨w2⟩ ∈ π ∧ lW⟨w1⟩ ≺π lW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)
∧ ∀a1, a2 ∈ (Get ∪ Put ∪ nF ∪ RCAS ∪ RFAA).(

t(a1) = t(a2) =⇒
(NIC⟨a2⟩ ∈ π ∧ Push⟨a1⟩ ≺π Push⟨a2⟩) ⇐⇒ NIC⟨a1⟩ ≺π NIC⟨a2⟩

)
∧ ∀a1 ∈ (Get ∪ Put ∪ nF ∪ RCAS ∪ RFAA), w2 ∈ lW. t(a1) = t(w2) =⇒

(B⟨w2⟩ ∈ π ∧ Push⟨a1⟩ ≺π lW⟨w2⟩) ⇐⇒ NIC⟨a1⟩ ≺π B⟨w2⟩
∧ (NIC⟨a1⟩ ∈ π ∧ lW⟨w2⟩ ≺π Push⟨a1⟩) ⇐⇒ B⟨w2⟩ ≺π NIC⟨a1⟩


∧ ∀w1, w2 ∈ nlW.

(
sameqp(w1, w2) =⇒
(B⟨w2⟩ ∈ π ∧ nlW⟨w1⟩ ≺π nlW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)
∧ ∀w1, w2 ∈ nrW.

(
sameqp(w1, w2) =⇒
(B⟨w2⟩ ∈ π ∧ nrW⟨w1⟩ ≺π nrW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)
∧ ∀w1, w2 ∈ narW.

(
sameqp(w1, w2) =⇒
(B⟨w2⟩ ∈ π ∧ narW⟨w1⟩ ≺π narW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)
∧ ∀w1 ∈ nrW, w2 ∈ narW.

(
sameqp(w1, w2) =⇒
(B⟨w2⟩ ∈ π ∧ nrW⟨w1⟩ ≺π narW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)
∧ ∀w1 ∈ narW, w2 ∈ nrW.

(
sameqp(w1, w2) =⇒
(B⟨w2⟩ ∈ π ∧ narW⟨w1⟩ ≺π nrW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)
∧ ∀w ∈ lW, f ∈ F. lW⟨w⟩ ≺π F⟨f⟩ ∧ t(w) = t(f) =⇒ B⟨w⟩ ≺π F⟨f⟩
∧ ∀w ∈ lW, u ∈ CAS. lW⟨w⟩ ≺π CAS⟨u, ⟩ ∧ t(w) = t(u) =⇒ B⟨w⟩ ≺π CAS⟨u, ⟩
∧ ∀w ∈ nlW, r ∈ nlR.

(nlW⟨w, ⟩ ≺π nlR⟨r, , , ⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π nlR⟨r, , , ⟩
∧ ∀w ∈ nrW, r ∈ nrR.

(nrW⟨w, ⟩ ≺π nrR⟨r, , , ⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π nrR⟨r, , , ⟩
∧ ∀w ∈ nrW, r ∈ narR.

(nrW⟨w, ⟩ ≺π naF⟨r, , , ⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π naF⟨r, , , ⟩
∧ ∀w ∈ nrW, r ∈ narR.

(nrW⟨w, ⟩ ≺π narR⟨r, , , , ⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π narR⟨r, , , , ⟩
∧ ∀w ∈ narW, r ∈ nrR.

(narW⟨w⟩ ≺π nrR⟨r, , , ⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π nrR⟨r, , , ⟩
∧ ∀w ∈ narW, r ∈ narR.

(narW⟨w⟩ ≺π naF⟨r, , , ⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π naF⟨r, , , ⟩
∧ ∀w ∈ narW, r ∈ narR.

(narW⟨w⟩ ≺π narR⟨r, , , , ⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π narR⟨r, , , , ⟩

72

NIC Order.

nicActOrder(π) ≜ ∀a1, a2. NIC⟨a1⟩ ≺π NIC⟨a2⟩ ∧ sameqp(a1, a2) =⇒
(a1 ∈ nF ∧ a2 ∈ Get ∧ nrR⟨ , , a2, ⟩ ∈ π =⇒ nF⟨a1⟩ ≺π nrR⟨ , , a2, ⟩)

∧ (a1 ∈ nF ∧ a2 ∈ Put ∧ nlR⟨ , , a2, ⟩ ∈ π =⇒ nF⟨a1⟩ ≺π nlR⟨ , , a2, ⟩)
∧ (a1 ∈ nF ∧ a2 ∈ RCAS ∧ naF⟨ , , a2, ⟩ ∈ π =⇒ nF⟨a1⟩ ≺π naF⟨ , , a2, ,⟩)
∧ (a1 ∈ nF ∧ a2 ∈ rRMW ∧ narR⟨ , , a2, , ⟩ ∈ π =⇒ nF⟨a1⟩ ≺π narR⟨ , , a2, , ⟩)
∧ (a1 ∈ nF ∧ a2 ∈ nF ∧ nF⟨a2⟩ ∈ π =⇒ nF⟨a1⟩ ≺π nF⟨a2⟩)
∧ (a1 ∈ Get ∧ a2 ∈ nF ∧ nF⟨a2⟩ ∈ π =⇒ nrR⟨ , , a1, w1⟩ ≺π nlW⟨w1, ⟩ ≺π nF⟨a2⟩)

∧
(
a1 ∈ Put ∧ a2 ∈ nF ∧ nF⟨a2⟩ ∈ π
=⇒ nlR⟨ , , a1, w1⟩ ≺π nrW⟨w1, e1⟩ ≺π CN⟨e1⟩ ≺π nF⟨a2⟩

)

∧

a1 ∈ RCAS ∧ a2 ∈ nF ∧ nF⟨a2⟩ ∈ π
=⇒ narR⟨ , , a1, w1, w2⟩ ≺π narW⟨w2⟩ ≺π nlW⟨w1, ⟩ ≺π nF⟨a2⟩
∨ naF⟨ , , a1, w1⟩ ≺π nlW⟨w1, ⟩ ≺π nF⟨a2⟩


∧
(
a1 ∈ RFAA ∧ a2 ∈ nF ∧ nF⟨a2⟩ ∈ π
=⇒ narR⟨ , , a1, w1, w2⟩ ≺π narW⟨w2⟩ ≺π nlW⟨w1, ⟩ ≺π nF⟨a2⟩

)
∧
(
a1 ∈ Get ∧ a2 ∈ Get ∧ nrR⟨ , , a2, w2⟩ ≺π nlW⟨w2, ⟩
=⇒ nrR⟨ , , a1, w1⟩ ≺π nlW⟨w1, ⟩ ≺π nlW⟨w2, ⟩

)
∧
(
a1 ∈ Get ∧ a2 ∈ Put ∧ nlR⟨ , , a2, w2⟩ ≺π nrW⟨w2, e2⟩ ≺π CN⟨e2⟩
=⇒ nrR⟨ , , a1, w1⟩ ≺π nlW⟨w1, ⟩ ≺π CN⟨e2⟩

)

∧

a1 ∈ Get ∧ a2 ∈ RCAS ∧
(
narR⟨ , , a2, w2, ⟩ ≺π nlW⟨w2, ⟩
∨ naF⟨ , , a2, w2⟩ ≺π nlW⟨w2, ⟩

)
=⇒ nrR⟨ , , a1, w1⟩ ≺π nlW⟨w1, ⟩ ≺π nlW⟨w2, ⟩


∧
(
a1 ∈ Get ∧ a2 ∈ RFAA ∧ narR⟨ , , a2, w2, ⟩ ≺π nlW⟨w2, ⟩
=⇒ nrR⟨ , , a1, w1⟩ ≺π nlW⟨w1, ⟩ ≺π nlW⟨w2, ⟩

)
∧
(
a1 ∈ Put ∧ a2 ∈ Get ∧ nrR⟨ , , a2, ⟩ ∈ π
=⇒ nlR⟨ , , a1, w1⟩ ≺π nrW⟨w1, ⟩ ≺π nrR⟨ , , a2, ⟩

)
∧
(
a1 ∈ Put ∧ a2 ∈ Get ∧ nrR⟨ , , a2, w2⟩ ≺π nlW⟨w2, ⟩
=⇒ nlR⟨ , , a1, w1⟩ ≺π nrW⟨w1, e1⟩ ≺π CN⟨e1⟩ ≺π nlW⟨w2, ⟩

)
∧
(
a1 ∈ Put ∧ a2 ∈ RCAS ∧ naF⟨ , , a2, w2⟩ ∈ π
=⇒ nlR⟨ , , a1, w1⟩ ≺π nrW⟨w1, e1⟩ ≺π naF⟨ , , a2, w2⟩

)
∧
(
a1 ∈ Put ∧ a2 ∈ RCAS ∪ RFAA ∧ narR⟨ , , a2, w2, ⟩ ∈ π
=⇒ nlR⟨ , , a1, w1⟩ ≺π nrW⟨w1, e1⟩ ≺π narR⟨ , , a2, w2, ⟩

)
∧ (a1 ∈ Put ∧ a2 ∈ Put ∧ nlR⟨ , , a2, ⟩ ∈ π =⇒ nlR⟨ , , a1, ⟩ ≺π nlR⟨ , , a2, ⟩)

∧
(
a1 ∈ Put ∧ a2 ∈ Put ∧ nlR⟨ , , a2, w2⟩ ≺π nrW⟨w2, ⟩
=⇒ nlR⟨ , , a1, w1⟩ ≺π nrW⟨w1, ⟩ ≺π nrW⟨w2, ⟩

)
∧
(
a1 ∈ Put ∧ a2 ∈ Put ∧ nlR⟨ , , a2, w2⟩ ≺π nrW⟨w2, e2⟩ ≺π CN⟨e2⟩
=⇒ nlR⟨ , , a1, w1⟩ ≺π nrW⟨w1, e1⟩ ≺π CN⟨e1⟩ ≺π CN⟨e2⟩

)

73

∧

a1 ∈ (RCAS ∪ RFAA) ∧ a2 ∈ Get ∧ nrR⟨ , , a2, ⟩ ∈ π

=⇒
(

a1 ∈ RCAS ∧ naF⟨ , , a1, ⟩ ≺π nrR⟨ , , a2, w2⟩
∨ narR⟨ , , a1, w1, ⟩ ≺π narW⟨w1⟩ ≺π nrR⟨ , , a2, w2⟩

)
∧

a1 ∈ (RCAS ∪ RFAA) ∧ a2 ∈ Get ∧ nrR⟨ , , a2, w2⟩ ≺π nlW⟨w2, ⟩

=⇒
(

a1 ∈ RCAS ∧ naF⟨ , , a1, w1⟩ ≺π nlW⟨w1, ⟩ ≺π nlW⟨w2, ⟩
∨ narR⟨ , , a1, w1, ⟩ ≺π nlW⟨w1, ⟩ ≺π nlW⟨w2, ⟩

)
∧

a1 ∈ (RCAS ∪ RFAA) ∧ a2 ∈ Put ∧ nlR⟨ , , a2, w2⟩ ≺π nrW⟨w2, ⟩

=⇒
(

a1 ∈ RCAS ∧ naF⟨ , , a1, w1⟩ ≺π nrW⟨w2, ⟩
∨ narR⟨ , , a1, w1, ⟩ ≺π narW⟨w1⟩ ≺π nrW⟨w2, ⟩

) 
∧

a1 ∈ (RCAS ∪ RFAA) ∧ a2 ∈ Put ∧ nlR⟨ , , a2, w2⟩ ≺π nrW⟨w2, e2⟩ ≺π CN⟨e2⟩

=⇒
(

a1 ∈ RCAS ∧ naF⟨ , , a1, w1⟩ ≺π nlW⟨w1, ⟩ ≺π CN⟨e2⟩
∨ narR⟨ , , a1, w1, ⟩ ≺π nlW⟨w1, ⟩ ≺π CN⟨e2⟩

) 
∧

a1 ∈ (RCAS ∪ RFAA) ∧ a2 ∈ RCAS ∧ naF⟨ , , a2, ⟩ ∈ π

=⇒
(

a1 ∈ RCAS ∧ naF⟨ , , a1, ⟩ ≺π naF⟨ , , a2, ⟩
∨ narR⟨ , , a1, , w1⟩ ≺π narW⟨w1⟩ ≺π naF⟨ , , a2, ⟩

)
∧

a1, a2 ∈ (RCAS ∪ RFAA) ∧ narR⟨ , , a2, , ⟩ ∈ π

=⇒
(

a1 ∈ RCAS ∧ naF⟨ , , a1, w1⟩ ≺π narR⟨ , , a2, , ⟩
∨ narR⟨ , , a1, , w1⟩ ≺π narW⟨w1⟩ ≺π narR⟨ , , a2, , ⟩

)

∧

a1, a2 ∈ (RCAS ∪ RFAA) ∧
(

a1 ∈ RCAS ∧ naF⟨ , , a2, w2⟩ ≺π nlW⟨w2, ⟩
∨ narR⟨ , , a2, w2, ⟩ ≺π nlW⟨w2, ⟩

)
=⇒

(
a1 ∈ RCAS ∧ naF⟨ , , a1, w1⟩ ≺π nlW⟨w1, ⟩ ≺π nlW⟨w2, ⟩

∨ narR⟨ , , a1, w1, ⟩ ≺π nlW⟨w1, ⟩ ≺π nlW⟨w2, ⟩

)


NIC Atomicity.

nicAtomicity(π) ≜ ∀a1, a2, r, w. λ1 = narR⟨r1, , a1, , w⟩
∧ λ2 ∈ {naF⟨ , , a2, ⟩, narR⟨ , , a2, , ⟩}
∧ a1, a2 ∈ rRMW ∧ n(a1) = n(a2) ∧ λ1 ≺π λ2

 =⇒ B⟨w⟩ ≺π λ2

Read Order.

wfrd(π) ≜ ∀π2, r, w, π1. π = π2 · lR⟨r, w⟩ · π1 =⇒ wfrdCPU(r, w, π1)

∧ ∀π2, u, w, π1. π = π2 · CAS⟨u,w⟩ · π1 =⇒ wfrdCPU(u,w, π1)

∧ ∀π2, r, w, π1. π = π2 · nlR⟨r, w, , ⟩ · π1 =⇒ wfrdNIC(r, w, π1)

∧ ∀π2, r, w, π1. π = π2 · nrR⟨r, w, , ⟩ · π1 =⇒ wfrdNIC(r, w, π1)

∧ ∀π2, r, w, π1. π = π2 · naF⟨r, w, , ⟩ · π1 =⇒ wfrdNIC(r, w, π1)

∧ ∀π2, r, w, π1. π = π2 · narR⟨r, w, , , ⟩ · π1 =⇒ wfrdNIC(r, w, π1)

74

wfrdCPU(r, w, π) ≜


∃π2, λ, π1. π = π2 · λ · π1

∧ λ ∈ {B⟨w⟩, CAS⟨w, ⟩}
∧ {B⟨w′⟩, CAS⟨w′, ⟩ ∈ π2 | loc(w′) = loc(r)} = ∅

∧
{
w′
∣∣∣∣ lW⟨w′⟩ ∈ π ∧ B⟨w′⟩ /∈ π ∧
loc(w′) = loc(r) ∧ t(w′) = t(r)

}
= ∅


∨

∃π2, λ, π1. π = π2 · λ · π1

∧ λ = lW⟨w⟩ ∧ t(w) = t(r) ∧ B⟨w⟩ /∈ π2

∧ {lW⟨w′⟩ ∈ π2 | loc(w′) = loc(r) ∧ t(w′) = t(r)} = ∅


∨

w = initloc(w)∧{
B⟨w′⟩, CAS⟨w′, ⟩ ∈ π,
lW⟨w′′⟩ ∈ π

∣∣∣∣ loc(w′) = loc(r) ∧
loc(w′′) = loc(r) ∧ t(w′′) = t(r)

}
= ∅



wfrdNIC(r, w, π) ≜

∃π2, λ, π1. π = π2 · λ · π1

∧ λ ∈ {B⟨w⟩, CAS⟨w, ⟩}
∧ {B⟨w′⟩, CAS⟨w′, ⟩ ∈ π2 | loc(w′) = loc(r)} = ∅


∨
(
w = initloc(w)∧
{B⟨w′⟩, CAS⟨w′, ⟩ ∈ π | loc(w′) = loc(r)} = ∅

)

Well-formed path.

wfp(π) ≜ nodup(π)

∧ backComp(π)

∧ bufFlushOrd(π)

∧ pollOrder(π)

∧ nicActOrder(π)

∧ nicAtomicity(π)

∧ wfrd(π)

Definition 21.

wf(M,B,A,QP, π) ≜ wfp(π)

∧ ∀x ∈ Loc. M(x) = read(π, x)

∧ ∀t ∈ Tid.B(t) = mksbuff(ε, t, π)

∧ ∀n ∈ Node.A(n) = chkatm(n, π)

∧ ∀t ∈ Tid.∀n ∈ (Node \ {n(t)}).

QP(t)(n).pipe = mkpipe(ε, t, n, π)
QP(t)(n).wbR = mkwbR(ε, t, n, π)
QP(t)(n).wbL = mkwbL(ε, t, n, π)


75

Where, the functions read, mksbuff, chkatm, mkpipe, mkwbR, and mkwbL are
defined below.

read(λ·π, x) ≜

{
w λ ∈ {B⟨w⟩, CAS⟨w, ⟩} ∧ loc(w) = x

read(π, x) otherwise

read(ε, x) ≜ initx

mksbuff(b, t, ε) ≜ b

mksbuff(b, t, π·λ) ≜


mksbuff(w·b, t, π) λ = lW⟨w⟩ ∧ t(w) = t ∧ B⟨w⟩ /∈ π

mksbuff(a·b, t, π) λ = Push⟨a⟩ ∧ NIC⟨a⟩ /∈ π ∧ t(a) = t

mksbuff(b, t, π) otherwise

chkatm(n, π) ≜

⊥ ∀w.

(
narR⟨ , , a, , w⟩ ∈ π

∧ n(a) = n

)
=⇒ B⟨w⟩ ∈ π

⊤ otherwise

mkpipe(pipe, t, n, ε) ≜ pipe

mkpipe(pipe, t, n, π·λ) ≜



mkpipe(a·pipe, t, n, π) if


t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ nlR⟨ , , a, ⟩ ̸∈ π ∧ nrR⟨ , , a, ⟩ ̸∈ π

∧ nF⟨a⟩ ̸∈ π ∧ naF⟨ , , a, ⟩ ̸∈ π

∧ narR⟨ , , a, , ⟩ ̸∈ π


mkpipe(w·pipe, t, n, π) if

(
t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ nlR⟨ , , a, w⟩ ∈ π ∧ nrW⟨w, ⟩ ̸∈ π

)

mkpipe(e·pipe, t, n, π) if

 t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ nlR⟨ , , a, w⟩ ∈ π ∧ nrW⟨w, e⟩ ∈ π

∧ CN⟨e⟩ ̸∈ π


mkpipe(w·pipe, t, n, π) if

(
t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ nrR⟨ , , a, w⟩ ∈ π ∧ nlW⟨w, ⟩ ̸∈ π

)

mkpipe(w·pipe, t, n, π) if

(
t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ naF⟨ , , a, w⟩ ∈ π ∧ nlW⟨w, ⟩ ̸∈ π

)

mkpipe(w·w′·pipe, t, n, π) if

(
t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ narR⟨ , , a, w,w′⟩ ∈ π ∧ narW⟨w′⟩ ̸∈ π

)
mkpipe(pipe, t, n, π) otherwise

mkwbR(wbR, t, n, ε) ≜ wbR

76

mkwbR(wbR, t, n, π·λ) ≜

mkwbR(w·wbR, t, n, π) if

(
t(λ) = t ∧ n(λ) = n ∧ B⟨w⟩ /∈ π

∧ λ ∈ {nrW⟨w, ⟩, narW⟨w⟩}

)
mkwbR(wbR, t, n, π) otherwise

mkwbL(wbL, t, n, ε) ≜ wbL

mkwbL(wbL, t, n, π·λ) ≜



mkwbL(e·w·wbL, t, n, π) if

(
t(λ) = t ∧ n(λ) = n ∧ λ = nlW⟨w, e⟩
∧ B⟨w⟩ /∈ π ∧ P⟨ , e⟩ /∈ π

)

mkwbL(e·wbL, t, n, π) if

(
t(λ) = t ∧ n(λ) = n ∧ λ = nlW⟨w, e⟩
∧ B⟨w⟩ ∈ π ∧ P⟨ , e⟩ /∈ π

)

mkwbL(e·wbL, t, n, π) if

(
t(λ) = t ∧ n(λ) = n ∧ λ = CN⟨e⟩
∧ P⟨ , e⟩ /∈ π

)
mkwbL(wbL, t, n, π) otherwise

Theorem 8. For all P,P′,M,M′,B,B′,A,A′,QP,QP′, π, π′:

• wf(M0,B0,A0,QP0, ε);
• if P,M,B,A,QP, π ⇒ P′,M′,B′,A′,QP′, π′ and wf(M,B,A,QP, π) then wf(M′,B′,A′,QP′, π′);
• if P,M0,B0,A0,QP0, ε ⇒∗ (λt.skip),M,B0,A0,QP, π such that forall t, n we
have QP(t)(n) = ⟨ε, ε, nEX∗⟩, then wf(M,B0,A0,QP, π) and complete(π).

The proof of the first part follows trivially from the definitions of M0, B0,
A0, and QP0. The second part is proved by induction on the structure of ⇒.
The last part follows from the previous two parts and induction on the length of
⇒∗, as well as how the definition of wf on empty store buffers and queue pairs
(regardless of nEX in wbL) implies complete(π).

77

D.5 From Annotated Semantics to Declarative Semantics

We define

getEG(π) ≜

{
(Event, po, rf, pf,mo, nfo, rao) if wfp(π) ∧ complete(π)

undefined otherwise

with

Event ≜ Event0 ∪ {getA(λ) | λ ∈ π}

Recall that Event0 is the set of initialisation events {initx | x ∈ Loc}, where
l(initx) = lW(x, 0)

getA : ALabel ⇀ Event

getA(lR⟨r, ⟩) ≜ r

getA(lW⟨w⟩) ≜ w

getA(CAS⟨u, ⟩) ≜ u

getA(F⟨f⟩) ≜ f

getA(nlR⟨r, , , ⟩) ≜ r

getA(nrW⟨w⟩) ≜ w

getA(nrR⟨r, , , ⟩) ≜ r

getA(nlW⟨w, ⟩) ≜ w

getA(naF⟨r, , , ⟩) ≜ r

getA(narR⟨r, , , , ⟩) ≜ r

getA(narW⟨w⟩) ≜ w

getA(P⟨p, ⟩) ≜ p

getA(nF⟨f⟩) ≜ f

getA(B⟨w⟩) ≜ w

getA(Push⟨ ⟩) is undefined

getA(NIC⟨ ⟩) is undefined

getA(CN⟨ ⟩) is undefined

getA(E⟨ ⟩) is undefined

We define getIλ(, π) and getOλ(, π) to perform the reverse operation of
getA. In the case of write events, getIλ(, π) retrieves the first label sending the
write to the buffer, while getOλ(, π) retrieves the second label committing the
write to memory.

getIλ(, π), getOλ(, π) : {getA(λ) | λ ∈ π} → ALabel

For all λ ∈ π:

• if type(λ) ∈ {lR, CAS, F, P, nlR, nrR, narR, naF, nF},
then getIλ(getA(λ), π) ≜ getOλ(getA(λ), π) ≜ λ;

• if type(λ) ∈ {lW, nlW, nrW, narW},
then getIλ(getA(λ), π) ≜ λ while getOλ(getA(λ), π) ≜ B⟨λ⟩.

• if λ = B⟨w⟩, then from backComp(π) there is λ′ ≺π λ such that type(λ) ∈
{lW, nlW, nrW, narW} and getA(λ′) = getA(λ) = w. From the previous case, we
have getIλ(w, π) ≜ λ′ and getOλ(w, π) ≜ λ.

78

From this we define two relations IB and OB on Event total on all meaningful
events by copying the ordering in π.

IB ≜ {(e1, e2) | getIλ(e1, π) ≺π getIλ(e2, π)} ∪ (Event0 × (Event \ Event0))

OB ≜ {(e1, e2) | getOλ(e1, π) ≺π getOλ(e2, π)} ∪ (Event0 × (Event \ Event0))

From wfp(π), IB and OB are transitive and irreflexive. Note: we could make
IB and OB total by adding an arbitrary total order on Event0.

rf ≜

{
(w, r)

∣∣∣∣ lR⟨r, w⟩ ∈ π ∨ nlR⟨r, w, , ⟩ ∈ π ∨ nrR⟨r, w, , ⟩ ∈ π ∨ CAS⟨r, w⟩ ∈ π
∨ narR⟨r, w, , , ⟩ ∈ π ∨ naF⟨r, w, , ⟩ ∈ π

}

pf ≜

{
(w, p)

∣∣∣∣ nlW⟨w, e⟩ ≺π P⟨p, e⟩
∨ nrW⟨w, e⟩ ≺π P⟨p, e⟩

}

λ generates e in π ≜



λ ∈ {lR⟨e, ⟩, lW⟨e⟩, CAS⟨e, ⟩, Push⟨e⟩, P⟨e, ⟩, F⟨e⟩}

∨ λ = Push⟨a⟩ ∧



λ ≺π nlR⟨e, , a, ⟩
∨ λ ≺π nlR⟨ , , a, e⟩
∨ λ ≺π nrR⟨e, , a, ⟩
∨ λ ≺π nrR⟨ , , a, e⟩
∨ λ ≺π naF⟨e, , a, ⟩
∨ λ ≺π naF⟨ , , a, e⟩
∨ λ ≺π narR⟨e, , a, , ⟩
∨ λ ≺π narR⟨ , , a, e, ⟩
∨ λ ≺π narR⟨ , , a, , e⟩





po ≜



Event0 × (Event \ Event0)

∪

(e1, e2)

∣∣∣∣∣∣
λ1 ≺π λ2 ∧ t(λ1) = t(λ2)

∧ λ1 generates e1 in π
∧ λ2 generates e2 in π


∪

(r, w)

∣∣∣∣∣∣∣∣
nlR⟨r, , , w⟩ ∈ π

∨ nrR⟨r, , , w⟩ ∈ π
∨ naF⟨r, , , w⟩ ∈ π
∨ narR⟨r, , , , w⟩ ∈ π


∪{(w1, w2) | narR⟨ , , , w2, w1⟩} ∈ π



mo ≜

(w1, w2)

∣∣∣∣∣∣
w1 = initx

∧ (B⟨w2⟩ ∈ π ∨ CAS⟨w2, ⟩ ∈ π)
∧ loc(w1) = x = loc(w2)

∪

(w1, w2)

∣∣∣∣∣∣∣∣
λ1 ≺π λ2

∧ λ1 ∈ {B⟨w1⟩, CAS⟨w1, ⟩}
∧ λ2 ∈ {B⟨w2⟩, CAS⟨w2, ⟩}
∧ loc(w1) = loc(w2)


79

nfo ≜


{(r, w) | sameqp(r, w) ∧ nlR⟨r, , , ⟩ ≺π nlW⟨w, ⟩ ≺π B⟨w⟩}

∪ {(r, w) | ∃λr, λw.sameqp(r, w) ∧ λr ≺π λw ≺π B⟨w⟩}
∪ {(w, r) | sameqp(w, r) ∧ nlW⟨w, ⟩ ≺π B⟨w⟩ ≺π nlR⟨r, , , ⟩}
∪ {(w, r) | ∃λr, λw.sameqp(w, r) ∧ λw ≺π B⟨w⟩ ≺π λr}


where λr ∈ {nrR⟨r′, . . .⟩, naF⟨r′, . . .⟩, narR⟨r′, . . .⟩}

λw ∈ {nrW⟨w, ⟩, narW⟨w⟩}

rao ≜

(r1, r2)

∣∣∣∣∣∣ n(a1) = n(a2) ∧

 λ1 ≺π λ2

∧ λ1 ∈ {naF⟨r1, a1, . . .⟩, narR⟨r1, a1, . . .⟩}
∧ λ2 ∈ {naF⟨r2, a2, . . .⟩, narR⟨r2, a2, . . .⟩}




From an execution graph E = getEG(π), we use the definitions of the paper
to define oppo, ippo, rf i, rfe, rb, rbi, ar, ob, and ib.

Lemma 2. w ∈ nlW =⇒ ∃r.
(

r ∈ nrR ∧ (r, w) ∈ po|imm

∨ r ∈ narR ∧ (r, w) ∈ po|imm ∪ (po|imm)2

)
Proof. By definition of po, we can only have such w ∈ nlW if there is some
λ = Push⟨a⟩ which generates w in π. Then we can consider the cases of a such
that Push⟨a⟩ generates some w ∈ nlW. Either:

• a ∈ Put, then there is some r ∈ nrR with (r, w) ∈ po|imm

• a ∈ RCAS ∪ RFAA, then there is some r ∈ narR with either (r, w) ∈ po|imm (in
the case of a failed RCAS) or (r, w) ∈ (po|imm)

2 (in the case of a successful
RCAS or RFAA)

Theorem 9. getEG(π) is well-formed.

Proof. We need to check the conditions of a pre-execution (Def. 18) and of well-
formedness (Def. 19). For the pre-execution conditions:

• Checking Event0 × (Event \ Event0) ⊆ po:
by definition.

• Checking po is a union of strict partial orders each on one thread:
If t(e1) ̸= t(e2), then (e1, e2) ̸∈ po and (e2, e1) ̸∈ po by definition. If t(e1) =
t(e2), then either (e1, e2) ∈ po or (e2, e1) ∈ po. This comes from the second
case of the definition of po: if there is λ1 and λ2 such that λi generates ei in π,
then either λ1 ≺π λ2 or λ2 ≺π λ1.

• Checking that rf is functional on its range:
If r ∈ R ⊆ {getA(λ) | λ ∈ π}, then we have either lR⟨r, ⟩, nlR⟨r, , , ⟩,
nrR⟨r, , , ⟩, naF⟨r, , , ⟩, or narR⟨r, , , , ⟩ in π, and r have at least one
antecedent.
If (w, r) ∈ rf, let us assume r ∈ nlR, then by definition nlR⟨r, w, , ⟩ ∈ π.
Since nodup(π), for all w′ ̸= w, we have nlR⟨r, w′, , ⟩ /∈ π, and syntactically
we cannot write lR⟨r, ⟩ or nrR⟨r, , , ⟩, so (w′, r) /∈ rf. Similarly, r ∈ lR,
r ∈ nrR, r ∈ naF or r ∈ narR only have one antecedent.

80

• Checking that rf relates events on the same location with matching values:

By syntactic definition of the annotated labels lR, nlR, nrR, naF and narR,
e.g., lR⟨r, w⟩ =⇒ eqloc&v(r, w).

• Checking that mo is a union of strict total orders for writes on each variables:

By definition of mo, given that we have complete(π), e.g., if lW⟨w⟩ ∈ π then
B⟨w⟩ ∈ π.

• Checking that pf ⊆ po ∩ sqp:

If (w, p) ∈ pf with w ∈ nlW (resp. nrW), then we have nlW⟨w, e⟩ ≺π P⟨p, e⟩.
There is λ such that λ generates w in π, and we have λ ≺π nlW⟨w, e⟩ ≺π

P⟨p, e⟩. Also, t(p) = t(w) and n(p) = n(e) = n(w), so we have (w, p) ∈ po and
(w, p) ∈ sqp.

• Checking that pf is functional on its domain:

If (w, p) ∈ pf with w ∈ nlW (resp. nrW), then we have nlW⟨w, e⟩ ≺π P⟨p, e⟩.
From nodup(π), for all p′ ̸= p we have P⟨p, e⟩ /∈ π, so w has at most one image.

• Checking that pf is total and functional on its range:

If p ∈ Event, then there is e ∈ nlEX (resp. nrEX) such that P⟨p, e⟩ ∈ π. From
backComp(π) there is w ∈ nlW (resp. nrW) such that nlW⟨w, e⟩ ≺π P⟨p, e⟩, and
so (w, p) ∈ pf. From nodup(π), e cannot be used in another nlW (resp. nrW)
annotated label, and p has exactly one antecedent.

• Checking that for all (a, b) ∈ sqp, a ∈ nrR∪naF∪narR, b ∈ nrW∪narW, (resp.
nlR/nlW) then (a, b) ∈ nfo ∪ nfo−1:

By definition of nfo, given that bufFlushOrd(π) forbids such interleavings as
nrW⟨w, ⟩ ≺π nrR⟨r, , , ⟩ ≺π B⟨w⟩ (resp. nlW and nlR) when sameqp(r, w).

• Checking that rao is a union of strict total orders for remote atomic reads:

By definition of rao.

For the well-formedness conditions:

(1) Let us assume (w1, w2) ∈ po ∩ sqp and (w2, p2) ∈ pf. The three events are on
the same thread and queue pair.

If w1 ∈ nlW, then by complete(π) there is a chain Push⟨a1⟩ ≺π NIC⟨a1⟩ ≺π

nR ≺π nlW⟨w1, e1⟩ for some nR ∈ {nrR⟨ , , a1, w1⟩, naF⟨ , , a1, w1⟩, narR⟨ , , a1, w1, ⟩};
if w1 ∈ nrW, there is instead a chain Push⟨a1⟩ ≺π NIC⟨a1⟩ ≺π nlR⟨ , , a1, w1⟩ ≺π

nrW⟨w1, e1⟩ ≺π CN⟨e1⟩. Similarly there is a chain for w2. By (w1, w2) ∈ po
we have Push⟨a1⟩ ≺π Push⟨a2⟩, and by bufFlushOrd(π) we have NIC⟨a1⟩ ≺π

NIC⟨a2⟩.
Let us call λ1 the last annotated label on the chain for w1, i.e., either nlW⟨w1, e1⟩
or CN⟨e1⟩. Similarly, λ2 is the last annotated label on the chain for w2. There
are four cases to consider, but in all four nicActOrder(π) implies λ1 ≺π λ2.

Then, from pollOrder(π), there is p1 such that P⟨p1, e1⟩ ≺π P⟨p2, e2⟩. By defi-
nitions, we have both (w1, p1) ∈ pf and (p1, p2) ∈ po.

(2) If r ∈ nlR, then there is w ∈ nrW (taken from nlR⟨r, , , w⟩) such that (r, w) ∈
po|imm. This is by the last case of definition of po, since there is λa such that
we have both λa generates r in π and λa generates w in π.
Similarly for nrR/nlW and nrW/nlR.

81

(3) If (r, w) ∈ po|imm, type(r) ∈ {nlR, nrR}, and type(w) ∈ {nlW, nrW}, then
(r, w) ∈ po comes from the third case of the definition of po, and we have
either nlR⟨r, , , w⟩ or nrR⟨r, , , w⟩ in π. In both cases, we have vr(r) = vw(w)
by syntactic definition of the annotated labels.

(4) (a) If r ∈ narR, then either: There is naF⟨r, , , w⟩ ∈ π such that w ∈ nlW and
(r, w) ∈ po|imm. This follows from the second case definition of po. There is
narR⟨r, , , w2, w1⟩ ∈ π such that w1 ∈ narW, w2 ∈ nlW, and (r, w1), (w1, w2) ∈ po|imm.
This follows from the second and third cases of the definition of po since there is
λa which generates r, w1 and w2 in π. (b) If w ∈ narW then (r, w), (w,w′) ∈ po|imm

with r ∈ narR and w′ ∈ nlW comes from the second case definition of po.
(5) If (r, w) ∈ G.po|imm, type(r) = narR and type(w) = nlW, then (r, w) comes

from the second case definition of po and we have naF⟨r, , , w⟩ ∈ π. Then
vr(r) = vw(w) by the syntax of annotated labels. If (r, w1), (w1, w2) ∈ G.po|imm,
type(r) = narR, type(w1) = narW and type(w2) = nlW, then (r, w1) comes from
the second case definition of po and (w1, w2) from the third case, so we have
narR⟨r, , , w2, w1⟩ ∈ π. Then vr(r) = vw(w2) by the syntax of annotated
labels.

(6) Comes from Lem. 2.

Lemma 3. OB; [Inst] ⊆ IB and [Inst]; IB ⊆ OB.

Proof. If (e1, e2) ∈ OB; [Inst], then getOλ(e1, π) ≺π getOλ(e2, π) = getIλ(e2, π).

• If e1 ∈ Inst, then getOλ(e1, π) = getIλ(e1, π), so we have getIλ(e1, π) ≺π

getIλ(e2, π) and (e1, e2) ∈ IB.
• If e1 ∈ {lW, nlW, nrW, narW}, there is λ such that type(λ) ∈ {lW, nlW, nrW, narW},
getA(λ) = e1, and getIλ(e1, π) = λ ≺π B⟨e1⟩ = getOλ(e1, π). By transitivity
we again have getIλ(e1, π) ≺π getIλ(e2, π) and (e1, e2) ∈ IB.

With a similar reasoning, we can see that [Inst]; IB ⊆ OB.

Theorem 10. getEG(π) is consistent.

Proof. From Definition 20, we need to check that both ib and ob are irreflexive.
Since IB and OB are irreflexive, it is enough to show that ib ⊆ IB and ob ⊆ OB.

The explicit definition using limits is the following (where rfe ≜ (rf \ rf i)
includes (rf ∩ sqp) since we assume the PCIe guarantees hold):

ib0 ≜ (ippo ∪ rf ∪ pf ∪ rbi ∪ nfo)+

ob0 ≜ (oppo ∪ rfe ∪ [nlW]; pf ∪ rb ∪ nfo ∪ mo ∪ rao ∪ ar; rao)+

ibn+1 ≜ (ibn ∪ obn; [Inst])+

obn+1 ≜ (obn ∪ [Inst]; ibn)+

ib ≜ lim
n→∞

ibn

ob ≜ lim
n→∞

obn

82

It is then enough to show that ib0 ⊆ IB and ob0 ⊆ OB. Using Lemma 3
above, we can check the induction case:

ibn+1 = (ibn ∪ obn; [Inst])+ ⊆ (ibn ∪ OB; [Inst])+ ⊆ (IB ∪ IB)+ = IB

obn+1 = (obn ∪ [Inst]; ibn)+ ⊆ (obn ∪ [Inst]; IB)+ ⊆ (OB ∪ OB)+ = OB

Since IB and OB are transitive, we need to check the components of ib0 and
ob0. There are twelve cases to verify.

• Checking ippo ⊆ IB.
Let Ecpu = {lR, lW, CAS, F, P} and Enic = {nlR, nrR, narR, naF, nlW, nrW, narW, nF}.
[Ecpu]; po ⊆ IB by definition of po and IB: Ecpu are the events for which the
same annotated label is used to define po and IB, i.e., ∀e ∈ Ecpu, getIλ(e, π) generates e in π.
To check that [Enic]; ippo; [Enic] ⊆ IB, there are 36 cases to consider. They are
all trivially satisfied by nicActOrder(π) and backComp(π).

• Checking oppo ⊆ OB.
From above we have [Inst]; oppo ⊆ [Inst]; ippo ⊆ [Inst]; IB ⊆ OB.
[lW]; po; [Event \ (lR ∪ P)] ⊆ OB by using bufFlushOrd(π).
For the remaining cases:

(G7) [nrW]; (po ∩ sqp); [nrW] ⊆ OB comes from nicActOrder(π) (i.e., nrW⟨. . .⟩ ≺π

nrW⟨. . .⟩) and bufFlushOrd(π) (i.e., B⟨. . .⟩ ≺π B⟨. . .⟩).
(G8) [nrW]; (po ∩ sqp); [narR] ⊆ OB comes from nicActOrder(π) (i.e., nrW⟨. . .⟩ ≺π

narR⟨. . .⟩) and bufFlushOrd(π) (i.e., B⟨. . .⟩ ≺π narR⟨. . .⟩).
(G9) If e1 ∈ nrW, e3 ∈ narW, and (e1, e3) ∈ (po ∩ sqp), then from Def. 19 there

is e2 ∈ narR such that (e2, e3) ∈ po|imm and thus (e1, e2) ∈ (po ∩ sqp).
From case G8 above, we have (e1, e2) ∈ OB. From backComp(π), we have
(e2, e3) ∈ [Inst]; IB ⊆ OB. Thus [nrW]; (po ∩ sqp); [narW] ⊆ OB.

(G10) [nrW]; (po ∩ sqp); [nrR] ⊆ OB comes from nicActOrder(π) (i.e., nrW⟨. . .⟩ ≺π

nrR⟨. . .⟩) and bufFlushOrd(π) (i.e., nrW⟨. . .⟩ ≺π B⟨. . .⟩ ≺π nrR⟨. . .⟩).
(G11) If e1 ∈ nrW, e3 ∈ nlW, and (e1, e3) ∈ (po ∩ sqp), then from Def. 19 there

is e2 ∈ (narR ∪ nrR) such that (e2, e3) ∈ po|imm
{1,2}

and thus (e1, e2) ∈
(po ∩ sqp). Then (e1, e2) ⊆ OB comes from cases G9 and G10 respectively.
From backComp(π), we have (e2, e3) ∈ [Inst]; IB ⊆ OB. Thus [nrW]; (po ∩
sqp); [nlW] ⊆ OB.

(I7) [narW]; (po∩sqp); [nrW] ⊆ OB comes from nicActOrder(π) (i.e., narW⟨. . .⟩ ≺π

nrW⟨. . .⟩) and bufFlushOrd(π) (i.e., B⟨. . .⟩ ≺π B⟨. . .⟩).
(I8) [narW]; (po ∩ sqp); [narR] ⊆ OB follows from Def. 19, nicActOrder(π) and

bufFlushOrd(π) by similar reasoning to I7.
(I9) [narW]; (po ∩ sqp); [narW] ⊆ OB follows similarly to I7.
(I10) [narW]; (po ∩ sqp); [nrR] ⊆ OB follows similarly to I7.
(K11) [nlW]; (po ∩ sqp); [nlW] ⊆ OB comes from nicActOrder(π) (i.e., nlW⟨. . .⟩ ≺π

nlW⟨. . .⟩) and bufFlushOrd(π) (i.e., B⟨. . .⟩ ≺π B⟨. . .⟩).
• Checking rfe ⊆ OB.
If (w, r) ∈ rfe, there is π1 and π2 such that π = π2 · getOλ(r, π) · π1, and we
use wfrd(π).

83

• If r ∈ lR, we have wfrdCPU(r, w, π1). The definition allow for three dif-
ferent cases. In the first case, λ ∈ {B⟨w⟩, CAS⟨w, ⟩} is in π1; we have
λ = getOλ(w, π) ≺π getOλ(r, π) and so (w, r) ∈ OB. In the second case,
we have λ = lW⟨w⟩ and t(w) = t(r); so (w, r) ∈ [lW]; (rf ∩ sthd); [lR] = rf i,
which contradicts (w, r) ∈ rfe = rf \ rf i. In the third case, w = initx for some
location x, so (w, r) ∈ Event0 × (Event \ Event0) ⊆ OB.

• If r ∈ CAS, similarly to above, except the second case of wfrdCPU(r, w, π1)
is not possible because of bufFlushOrd(π): B⟨w⟩ /∈ π1 while CAS acts as a
memory fence.

• If r ∈ nlR, we have wfrdNIC(r, w, π1), with two possibilities. In the first case,
λ ∈ {B⟨w⟩, CAS⟨w, ⟩} is in π1; we have λ = getOλ(w, π) ≺π getOλ(r, π) and
so (w, r) ∈ OB. In the second case, w = initx for some location x, so
(w, r) ∈ Event0 × (Event \ Event0) ⊆ OB.

• If r ∈ nrR or narR, similarly to above.
• Checking rf ⊆ IB.
From above we have rfe = rfe; [Inst] ⊆ OB; [Inst] ⊆ IB.
If (w, r) ∈ rf i ⊆ [lW]; rf; [lR], then there is lR⟨r, w⟩ ∈ π. There is π1 and π2

such that π = π2 ·lR⟨r, w⟩ ·π1. So by wfrd(π) we have wfrdCPU(r, w, π1) which
implies lW⟨w⟩ ≺π lR⟨r, w⟩ and (w, r) ∈ IB.

• Checking [nlW]; pf ⊆ OB.
If (w, p) ∈ pf with w ∈ nlW, then there exists e such that nlW⟨w, e⟩ ≺π P⟨p, e⟩.
From backComp(π), we have nlW⟨w, e⟩ ≺π B⟨w⟩ ≺π P⟨p, e⟩ and so (w, p) ∈ OB.

• Checking pf ⊆ IB.
If (w, p) ∈ pf, then there exists e such that either nlW⟨w, e⟩ ≺π P⟨p, e⟩ or
nrW⟨w, e⟩ ≺π P⟨p, e⟩. In both cases we immediately have (w, p) ∈ IB.

• Checking rbi ⊆ IB.
If (r, w′) ∈ rbi then r ∈ lR, w′ ∈ lW, t(r) = t(w′), and there exists w such that
(w, r) ∈ rf and (w,w′) ∈ mo. There is π4 and π3 such that π = π4 ·lR⟨r, w⟩·π3.
So by wfrd(π) we have wfrdCPU(r, w, π3), and there is three cases to consider.
• In the first case, π3 = π2 ·λw ·π1, with λw ∈ {B⟨w⟩, CAS⟨w, ⟩}, and B⟨w′⟩ /∈

π2. Since (w,w′) ∈ mo we have B⟨w′⟩ /∈ π1, an so B⟨w′⟩ /∈ π3. The last
condition of the first case then gives us lW⟨w′⟩ /∈ π3, which implies (r, w′) ∈
IB.

• In the second case, π3 = π2 · λw · π1, with λw = lW⟨w⟩, thread(w) =
thread(r), and B⟨w⟩ /∈ π3. Then w and w′ are on the same thread, and by
bufFlushOrd(π) and (w,w′) ∈ mo we have lW⟨w⟩ ≺π lW⟨w′⟩ and lW⟨w′⟩ /∈ π1.
The last condition of the second case gives us lW⟨w′⟩ /∈ π2, so lW⟨w′⟩ /∈ π3

and (r, w′) ∈ IB.
• In the last case, w = initx for some location x, and we immediately get
lW⟨w′⟩ /∈ π3, which implies (r, w′) ∈ IB.

• Checking rb ⊆ OB.
If (r, w′) ∈ rb, then there exists w such that (w, r) ∈ rf and (w,w′) ∈ mo. By
definition of rf, there is π4 and π3 such that π = π4 ·λr ·π3, with λr ∈ {lR⟨r, w⟩,
CAS⟨r, w⟩, nlR⟨r, w, , ⟩, nrR⟨r, w, , ⟩, naF⟨r, w, , ⟩, narR⟨r, w, , , ⟩}. So by
wfrd(π) we have either wfrdNIC(r, w, π3) or wfrdCPU(r, w, π3), and there are
five cases to consider.

84

• In the first case of wfrdNIC(r, w, π3), π3 = π2·getOλ(w, π)·π1, and getOλ(w′, π) /∈
π2. Since (w,w′) ∈ mo we have getOλ(w′, π) /∈ π1, and thus getOλ(w′, π) /∈
π3. So getOλ(w′, π) ∈ π4 and (r, w′) ∈ OB.

• In the last case wfrdNIC(r, w, π3), w = initx for some location x, and we
immediately have getOλ(w′, π) /∈ π3, which implies (r, w′) ∈ OB.

• For the first case of wfrdCPU(r, w, π3), same reasoning as for the first case
of wfrdNIC.

• For the second case of wfrdCPU(r, w, π3), π3 = π2 · getIλ(w, π) · π1, with
thread(w) = thread(r), and getOλ(w, π) /∈ π3. So getOλ(w, π) ∈ π4, and
since (w,w′) ∈ mo we have getOλ(w′, π) ∈ π4 as well, and (r, w′) ∈ OB.

• For the last case of wfrdCPU(r, w, π3), same reasoning as for the last case
of wfrdNIC.

• Checking nfo ⊆ IB.
By definition of nfo.

• Checking nfo ⊆ OB.
By definition of nfo.

• Checking mo ⊆ OB.
By definition of mo, as what matters are the initx, B⟨w⟩, and CAS⟨w, ⟩ events.

• Checking rao ⊆ OB.
By definition of rao.

• Checking ar; rao ⊆ OB.
If (w, r1) ∈ ar then narR⟨r1, a1, , , w⟩ ∈ π for some a1 ∈ rRMW, and if (r1, r2) ∈
rao then narR⟨r1, , a1, , w⟩ ≺π λr for some λr ∈ {naF⟨r2, , a2, ⟩, narR⟨r2, , a2, , ⟩},
with n(a1) = n(a2). Then using nicAtomicity(π) we have that B⟨w⟩ ≺π λr.

85

D.6 From Declarative Semantics to Annotated Semantics

From a program P and a well-formed consistent execution graphG = (Event, po, rf, pf,mo, nfo, rao),
where (Event, po) is generated by P, we want to reconstruct an annotated se-
mantics execution.

Theorem 11. ib and ob can be extended into total relations IB and OB on Event
such that:

• IB and OB are irreflexive and transitive;
• OB; [Inst] ⊆ IB and [Inst]; IB ⊆ OB.

Proof. We show that if ib is not already total we can extend it (and maybe
ob) into a strictly bigger relation satisfying the constraints of the theorem. Let
us assume that there is (a, b) ∈ Event2 such that (a, b) /∈ ib and (b, a) /∈ ib.
We arbitrarily decide to include (a, b) in our relation and we define ib′ = (ib ∪
{(a, b)})+ and ob′ = (ob ∪ [Inst]; ib′)+.

Clearly ib′ and ob′ are transitive, ib′ is irreflexive, and [Inst]; ib′ ⊆ ob′. We
need to prove the following two facts: ob′ is still irreflexive; and ob′; [Inst] ⊆ ib′.

First, let us check that (ob∪[Inst]; ib′)+ is irreflexive. Since ob and ([Inst]; ib′)
are both transitive and irreflexive, a cycle would only be possible by alternating
between the two components, so it is enough to show that (ob; ([Inst]; ib′))+

is irreflexive. But (ob; ([Inst]; ib′))+ = ((ob; [Inst]); ib′)+ ⊆ (ib; ib′)+ ⊆ ib′ is
irreflexive. Thus ob′ is irreflexive.

Then, we need to check that ob′; [Inst] ⊆ ib′. Using some rewriting, ob′ =
(ob∪[Inst]; ib′)+ = ob∪(ob∗; ([Inst]; ib′))+; ob∗. We know ob; [Inst] ⊆ ib′, which
also implies ob∗; [Inst] ⊆ ib′∗. So ob′; [Inst] = ob; [Inst]∪((ob∗; [Inst]); ib′)+; (ob∗; [Inst]) ⊆
ib′ ∪ (ib′∗; ib′)+; ib′∗ ⊆ ib′.

Once ib is a total relation on Event, we can similarly freely extend ob into a
total relation.

We use Theorem 11 above to extend ib and ob into total relations IB and OB.
Since (Event, po) is derived from P, by Appendix D.2 we have that for all

t ∈ Tid there are st and Gt such that Gt ∈ Gt(st), P(t)↣ st and (Event, po) =
Ginit; (∥t∈Tid Gt). We consider each premise of the form C ↣ s, where C is a
primitive command, to generate new events and annotated labels.

• If s = r ∈ lR, from well-formedness conditions, there is w such that (w, r) ∈ rf
and eqloc&v(r, w). We create an annotated label lR⟨r, w⟩.

• If s = u, s′ where u ∈ CAS, from well-formedness conditions, there is w such
that (w, u) ∈ rf and eqloc&v(u,w). We create an annotated label CAS⟨u,w⟩,
then process s′.

• If s = f, r, s′ where f ∈ F, r ∈ lR, and w ∈ lW, from well-formedness condi-
tions, there is w′ such that (w′, r) ∈ rf and eqloc&v(r, w

′). We create annotated
labels F⟨f⟩, lR⟨r, w′⟩, lW⟨w⟩ and B⟨w⟩, then process s′.

• If s = w ∈ lW, we create annotated labels lW⟨w⟩ and B⟨w⟩.
• If s = f ∈ F, we create annotated labels F⟨f⟩.

86

• If s = r, w where r ∈ nlR and w ∈ nrW, we create two events a ∈ Put and
e ∈ nrEX, and the annotated labels Push⟨a⟩, NIC⟨a⟩, nlR⟨r, w′, a, w⟩ (where
(w′, r) ∈ rf), nrW⟨w, e⟩, B⟨w⟩, and CN⟨e⟩. If there is p such that (w, p) ∈ pf,
we also create an annotated label P⟨p, e⟩. To simplify later definition, we also
extend po such that the event a is placed just before r, and e just after w.
I.e., let po′ = po ∪ {(e′, a) | (e′, r) ∈ po} ∪ {(a, e′) | (r, e′) ∈ po∗} and redefine
po = po′ ∪ {(e′, e) | (e′, w) ∈ po′∗} ∪ {(e, e′) | (w, e′) ∈ po′}.
Note: from well-formedness conditions, every nlR and every nrW are part of
such a pair.

• If s = r, w where r ∈ nrR and w ∈ nlW, we similarly create a ∈ Get, e ∈ nlEX,
Push⟨a⟩, NIC⟨a⟩, nrR⟨. . .⟩, nlW⟨. . .⟩, B⟨. . .⟩, and potentially P⟨. . .⟩.

• If s = r, w where r ∈ narR and w ∈ nlW, we have C of the form z :=
RCAS(x, e, e′), so we use the values [[e]] and [[e′]] to create a ∈ RCAS, Push⟨a⟩,
NIC⟨a⟩, naF⟨. . .⟩, nlW⟨. . .⟩, B⟨. . .⟩, and potentially P⟨. . .⟩.

• If s = r, w1, w2 where r ∈ narR, w1 ∈ narW, w2 ∈ nlW, we have C either of
the form z := RFAA(x, e) or z := RCAS(x, e1, e2), so we create a ∈ RFAA or
a ∈ RCAS accordingly, and Push⟨a⟩, NIC⟨a⟩, narR⟨. . .⟩, narW⟨w1⟩, nlW⟨w2, . . .⟩,
B⟨w1⟩, B⟨w2⟩ and potentially P⟨. . .⟩.

• If s = f ∈ nF, we create the annotated labels Push⟨f⟩, NIC⟨f⟩, and nF⟨f⟩.
• We ignore s = p ∈ P, as this is already handled by our earlier cases.

Then, we use IB and OB to reconstruct a partial path from these annotated
labels. We define a path π0 such that:

• π0 ∈ (ALabel \ (Push ∪ NIC ∪ CN))∗

• getIλ(e1, π0) ≺π0 getIλ(e2, π0) ⇐⇒ (e1, e2) ∈ IB
• getOλ(e1, π0) ≺π0

getOλ(e2, π0) ⇐⇒ (e1, e2) ∈ OB
• ∀w ∈ {lW, nlW, nrW, narW}, getIλ(w, π0) ≺π0

getOλ(w, π0)

This is possible from the properties of IB and OB. For pairs of annotated labels
not ordered by IB or OB, we decide to order lW⟨w⟩/nlW⟨w, ⟩/nrW⟨w, ⟩/narW⟨w⟩
first and B⟨w⟩ last. Note that the annotated labels Push⟨. . .⟩, NIC⟨. . .⟩, and
CN⟨. . .⟩ not covered by IB/OB are not yet integrated in π0.

Then we extend π0 to add annotated labels not considered by the declara-
tive semantics. We use the following extension function that introduces a new
annotated label as early as possible after a set of dependencies.

extend(π, λ, S) ≜

{
π2 · λ · λ′ · π1 if π = π2 · λ′ · π1 ∧ λ′ ∈ S ∧ π2 ∩ S = ∅
π · λ if π ∩ S = ∅

We define a new function to recover the first annotated label corresponding
to an event:

Eext ≜ Event ∪ (Get ∪ Put ∪ RCAS ∪ RFAA ∪ nlEX ∪ nrEX)

getCPU : Eext ⇀ ALabel

87

getCPU(e) ≜


getIλ(e, π0) if e ∈ Ecpu = {lR, lW, CAS, F, P}
Push⟨e⟩ if e ∈ {Put, Get, RCAS, RFAA, nF}
undefined otherwise

And a similar function for events emptying a CPU buffer:

getTSO : Eext ⇀ ALabel

getTSO(e) ≜


B⟨e⟩ if e ∈ lW

NIC⟨e⟩ if e ∈ {Put, Get, RCAS, RFAA, nF}
undefined otherwise

Let us consider (a1, . . . , an) = Event∩{Put, Get, RCAS, RFAA, nF} in po order,
i.e., if i < j then (aj , ai) /∈ po. We extend π0 successively until we get πn:

• We introduce Push as early as possible:
Let π′ = extend(πi−1, Push⟨ai⟩, {getCPU(e) | (e, ai) ∈ po})

• We introduce NIC as early as possible:
Let π′′ = extend(π′, NIC⟨ai⟩, {Push⟨ai⟩} ∪ {getTSO(e) | (e, ai) ∈ po})

• If ai ∈ Put, there is ei ∈ nrEX such that nlR⟨ , , ai, w⟩ ≺π0
nrW⟨w, ei⟩. We

also introduce CN: Let S = {nrW⟨w, ei⟩} ∪ {nlW⟨ , e⟩ | (e, ei) ∈ po ∩ sqp} ∪
{CN⟨e⟩ | (e, ei) ∈ po ∩ sqp}, we pose πi = extend(π′′,CN⟨ei⟩, S).
Otherwise, i.e. ai /∈ Put, we simply have πi = π′′

Finally, π = πn is our path for an annotated semantics reduction. We clearly
have complete(π) by definition. Our goal is then to prove that wfp(π) holds. It
is composed of seven properties. Note that we already have the existence of the
relevant annotated labels, and we need to show that the ordering constraints are
respected.

nodup
nodup(π) directly comes from the definition of annotated labels. There is no

conflict in event usage.

backComp
Here are a couple lemmas showing that the new annotated labels are not

placed too late and do not disturb the expected ordering.

Lemma 4. For all a ∈ {Put, Get, RCAS, RFAA, nF} and b ∈ Event, if (a, b) ∈ po∗,
then Push⟨a⟩ ≺π getIλ(b, π0).

Proof. We take an arbitrary b, and proceed for a in po order, i.e., we can assume
it holds for e ∈ {Put, Get, RCAS, RFAA, nF} such that (e, a) ∈ po. By definition,
Push⟨a⟩ comes from an extension π′′ = extend(π′, Push⟨a⟩, {getCPU(e) | (e, a) ∈ po})
and has been placed either first—and the result is trivial—or just after some
getCPU(e) with (e, a) ∈ po. If e ∈ {Put, Get, RCAS, RFAA, nF}, we have Push⟨e⟩ ≺π′′

Push⟨a⟩ ≺π′′ getIλ(b, π0) by induction hypothesis. If e ∈ Ecpu = {lR, lW, CAS, F, P},
we have getIλ(e, π0) ≺π′′ Push⟨a⟩ ≺π′′ getIλ(b, π0) since (e, b) ∈ ippo ⊆ IB.

88

Lemma 5. ∀a ∈ {Put, Get, RCAS, RFAA, nF}, ∀b ∈ {nF, nrR, nlR, narR, lW}, if
(a, b) ∈ po∗, then NIC⟨a⟩ ≺π getOλ(b, π0).

Proof. We take an arbitrary b ∈ {nF, nrR, nlR, narR}, and proceed for a in po
order, i.e., we can assume it holds for e ∈ {Put, Get, RCAS, RFAA, nF} such that
(e, a) ∈ po. By definition, NIC⟨a⟩ comes from an extension π′′ = extend(π′, NIC⟨a⟩, S),
with S = {Push⟨a⟩} ∪ {getTSO(e) | (e, a) ∈ po}, and has been placed just after
some λ ∈ S.

• If λ = Push⟨a⟩, then we have λ ≺π′′ NIC⟨a⟩ ≺π′′ getOλ(b, π0) using Lemma 4
above, since getIλ(b, π0) = getOλ(b, π0) or getIλ(b, π0) ≺π′′ getOλ(b, π0).

• If λ = getTSO⟨e⟩ = NIC⟨e⟩ for some e ∈ {Put, Get, RCAS, RFAA, nF}, then we
have λ ≺π′′ NIC⟨a⟩ ≺π′′ getOλ(b, π0) by induction hypothesis.

• If λ = getTSO⟨e⟩ = B⟨e⟩ for some e ∈ lW, then we have B⟨e⟩ ≺π′′ NIC⟨a⟩ ≺π′′

getOλ(b, π0) since (e, b) ∈ oppo ⊆ OB.

Lemma 6. Forall w,e,p, if nrW⟨w, e⟩ ∈ π and P⟨p, e⟩ ∈ π, then CN⟨e⟩ ≺π P⟨p, e⟩.

Proof. Once again, we proceed for e in po order, i.e., we can assume the result
holds for e′ ∈ nrEX such that (e′, e) ∈ po. CN⟨e⟩ is inserted in some operation
π′′ = extend(π′,CN⟨e⟩, S), with S = {nrW⟨w, e⟩}∪{nlW⟨ , e′⟩ | (e′, e) ∈ po ∩ sqp}∪
{CN⟨e′⟩ | (e′, e) ∈ po ∩ sqp}. It is then placed just after some label λ ∈ S.

• If λ = nrW⟨w, e⟩, we have λ ≺π′′ CN⟨e⟩ ≺π′′ P⟨p, e⟩ because (w, p) ∈ pf ⊆ IB.
• If λ = CN⟨e′⟩ with (e′, e) ∈ po∩sqp, then there is some w′ such that (w′, w) ∈
po ∩ sqp and nrW⟨w′, e′⟩ ∈ π′. From well-formedness condition number 1 (see
Definition 19), there is some p′ such that (w′, p′) ∈ pf and (p′, p) ∈ po. By
induction hypothesis, we have CN⟨e′⟩ ≺π′ P⟨p′, e′⟩, and from (p′, p) ∈ IB we
have P⟨p′, e′⟩ ≺π′ P⟨p, e⟩. In the end, we have the result CN⟨e′⟩ ≺π′′ CN⟨e⟩ ≺π′′

P⟨p, e⟩.
• If λ = nlW⟨w′, e′⟩ with (e′, e) ∈ po∩sqp, then we also have (w′, w) ∈ po∩sqp,
so from well-formedness condition number 1 (see Definition 19), there is some
p′ such that (w′, p′) ∈ pf and (p′, p) ∈ po. We have nlW⟨w′, e′⟩ ≺π′′ CN⟨e⟩ ≺π′′

P⟨p′, e′⟩ ≺π′′ P⟨p, e⟩.

We can then check that we have backComp(π):

• lW⟨w⟩ ≺π B⟨w⟩ comes from the third property when defining π0; similarly for
nlW, nrW and narW.

• Push⟨a⟩ ≺π NIC⟨a⟩ comes from the extension process.
• NIC⟨f⟩ ≺π nF⟨f⟩ comes from Lemma 5; similarly for NIC⟨a⟩ ≺π nlR/nrR/naF/narR⟨. . .⟩.
• nlR⟨r, w, a, w′⟩ ≺π nrW⟨w′, e⟩ comes from (r, w′) ∈ ippo ⊆ IB; similarly for
nrR/nlW, naF/nlW, narR/nlW and narR/narW.

• nrW⟨w, e⟩ ≺π CN⟨e⟩ comes from the extension process
• nlW⟨w, e⟩ ≺π B⟨w⟩ ≺π P⟨p, e⟩ comes from (w, p) ∈ [nlW]; pf ⊆ OB.
• CN⟨e⟩ ≺π P⟨p, e⟩ comes from Lemma 6.

Thus we have backComp(π).

bufFlushOrd

89

• lW⟨w1⟩ ≺π lW⟨w2⟩ ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩ when t(w1) = t(w2) comes the fact
that [lW]; po; [lW] ⊆ (IB∪OB), so both sides are true if and only if (w1, w2) ∈ po;
similarly for nlW and nrW/narW on the same queue pair.

• When t(a1) = t(a2), Push⟨a1⟩ ≺π Push⟨a2⟩ ⇐⇒ NIC⟨a1⟩ ≺π NIC⟨a2⟩ ⇐⇒
(a1, a2) ∈ po from the definition of the extension process (to define πn).

• For a ∈ {Put, Get, nF, RCAS, RFAA}, w ∈ lW, such that t(a) = t(w):
• If (w, a) ∈ po, then lW⟨w⟩ ≺π Push⟨a⟩ and B⟨w⟩ ≺π NIC⟨a⟩ from the defini-
tion of the extension process.

• If (a,w) ∈ po, then Push⟨a⟩ ≺π lW⟨w⟩ and NIC⟨a⟩ ≺π B⟨w⟩ from Lemmas 4
and 5.

• When t(w) = t(f), lW⟨w⟩ ≺π F⟨f⟩ implies (w, f) ∈ po (since [F]; po; [lW] ⊆
ippo ⊆ IB), which implies B⟨w⟩ ≺π F⟨f⟩ (since [lW]; po; [F] ⊆ oppo ⊆ OB);
similarly for CAS.

• If w ∈ nlW, r ∈ nlR, and sameqp(w, r), then from the definition of pre-
executions (see condition 6 of Definition 18), either (w, r) ∈ nfo or (r, w) ∈
nfo. If nlW⟨w, ⟩ ≺π nlR⟨r, , , ⟩, then (r, w) /∈ nfo (since nfo ⊆ IB) and
(w, r) ∈ nfo. Thus, B⟨w⟩ ≺π nlR⟨r, , , ⟩ (since nfo ⊆ OB); similarly for
w ∈ {nrW, narW} and r ∈ {nrR, narR}.

Thus we have bufFlushOrd(π).

pollOrder

Lemma 7. For all e1, e2 ∈ {nlEX, nrEX}, such that sameqp(e1, e2), let λ1 ∈
{nlW⟨ , e1⟩,CN⟨e1⟩}, λ2 ∈ {nlW⟨ , e2⟩,CN⟨e2⟩}, then (e1, e2) ∈ po ⇐⇒ λ1 ≺π

λ2.

Proof. By symmetry, we only need to show (e1, e2) ∈ po =⇒ λ1 ≺π λ2. Once
again, we proceed for e1 in po order, i.e., we can assume the result holds for
e′ ∈ nEX such that (e′, e1) ∈ po.

• If λ1 = nlW⟨w1, e1⟩ and λ2 = nlW⟨w2, e2⟩, then (e1, e2) ∈ po implies (w1, w2) ∈
(po ∩ sqp), so (w1, w2) ∈ ippo ⊆ IB and λ1 ≺π λ2.

• If λ1 = nlW⟨w1, e1⟩ and λ2 = CN⟨e2⟩, then by definition of the extension
process we have λ1 ≺π λ2.

• If λ1 = CN⟨e1⟩ and λ2 = nlW⟨w2, e2⟩, then λ1 is inserted in some operation
π′′ = extend(π′, CN⟨e1⟩, S), with S = {nrW⟨ , e1⟩}∪{nlW⟨ , e′⟩ | (e′, e1) ∈ po ∩ sqp}∪
{CN⟨e′⟩ | (e′, e1) ∈ po ∩ sqp}. It is then placed just after some label λ ∈ S.
• If λ = nrW⟨w1, e1⟩, we have λ ≺π′′ λ1 ≺π′′ λ2 because (w1, w2) ∈ ippo ⊆ IB.
• If λ = CN⟨e′⟩ or λ = nlW⟨ , e′⟩, with (e′, e1) ∈ po ∩ sqp, then by induction

hypothesis λ ≺π′′ λ1 ≺π′′ λ2.
• If λ1 = CN⟨e1⟩ and λ2 = CN⟨e2⟩, then by definition of the extension process
we have λ1 ≺π λ2.

Let us assume we have e1, e2, p2, λ1, λ2 such that sameqp(e1, e2), λ1 ∈ {nlW⟨ , e1⟩,CN⟨e1⟩},
λ2 ∈ {nlW⟨ , e2⟩,CN⟨e2⟩}, λ1 ≺π λ2, and P⟨p2, e2⟩ ∈ π.

From the creation of the events e1 and e2, there is some w1, w2 ∈ {nlW, nrW}
such that (wi, ei) ∈ po|imm. From Lemma 7, we have (e1, e2) ∈ po and thus

90

(w1, w2) ∈ (po ∩ sqp). By definition, we also have (w2, p2) ∈ pf. From well-
formedness condition number 1 (see Definition 19), there is some p1 such that
(w1, p1) ∈ pf and (p1, p2) ∈ po. Thus we have P⟨p1, e1⟩ ≺π P⟨p2, e2⟩ as required
to prove pollOrder(π).

nicActOrder
Let a1 and a2 such that NIC⟨a1⟩ ≺π NIC⟨a2⟩ and sameqp(a1, a2). From the

definition of the extension process, we have (a1, a2) ∈ po.

• If a1 ∈ nF or a2 ∈ nF, then most of the required results hold by definition of
ippo. The only exception is CN⟨e⟩ ≺π nF⟨a2⟩ which holds (by induction on e
in po order) because all the dependencies of CN⟨e⟩ are before nF⟨a2⟩ by ippo.

• If (a1 ∈ Get ∧ a2 ∈ Get), the result holds by ippo.
• If (a1 ∈ Get ∧ a2 ∈ Put), the result holds by Lemma 7.
• If (a1 ∈ Get ∧ a2 ∈ RCAS ∪ RFAA), the results hold by ippo.
• If (a1 ∈ Put ∧ a2 ∈ Get), the first result holds by ippo, the second by Lemma 7.
• If (a1 ∈ Put ∧ a2 ∈ Put), the first two results hold by ippo, the last one by
Lemma 7.

• If (a1 ∈ Put ∧ a2 ∈ RCAS ∪ RFAA), the results hold by ippo.
• If (a1 ∈ RCAS ∪ RFAA ∧ a2 ∈ Get), the results hold by ippo.
• If (a1 ∈ RCAS ∪ RFAA ∧ a2 ∈ Put), the first result holds by ippo, the latter by
Lemma 7.

• If (a1, a2 ∈ RCAS ∪ RFAA), the first result holds by ippo, the latter by Lemma 7.

Thus we have nicActOrder(π).

nicAtomicity
For every a1, a2 ∈ rRMW where n(a1) = n(a2), if narR⟨r1, a1, , , w⟩ ≺π λr

where λr ∈ {naF⟨r2, , a2, ⟩, narR⟨r2, , a2 , ⟩}, then from the extension process
we have (r1, w) ∈ po|imm, and w ∈ narW, so (w, r1) ∈ ar. Then we need to show
that (r1, r2) ∈ rao. Suppose, for contradiction, that (r1, r2) ̸∈ rao. By definition
of rao, for each node n, raon is a total order on {e ∈ narR | n(e) = n}. Thus we
have either (r1, r2) ∈ rao or (r2, r1) ∈ rao, and by assumption the prior is not
the case so (r2, r1) ∈ rao ⊆ OB. However, since narR⟨r1, . . .⟩ ≺π λr, we have
(r1, r2) ∈ OB, which is a contradiction, as OB is irreflexive. Therefore reject our
original assumption. Thus (r1, r2) ∈ rao, then we have (w, r2) ∈ ar; rao ⊆ OB, so
B⟨w⟩ ≺π λr. Thus we have nicAtomicity(π).

wfrd
Let us assume we have π = π4 · λr · π3, with λr ∈ {lR⟨r, w⟩, CAS⟨r, w⟩,

nlR⟨r, w, , ⟩, nrR⟨r, w, , ⟩, naF⟨r, w, , ⟩, narR⟨r, w, , , ⟩}. In all cases we have
(w, r) ∈ rf. Another important fact is that ∀w′, (w,w′) ∈ mo =⇒ (r, w′) ∈ rb.

• If λr = lR⟨r, w⟩, we need to show wfrdCPU(r, w, π3).
• If w = initloc(w), then we need to check that {B⟨w′⟩, CAS⟨w′, ⟩ ∈ π3 | loc(w′) = loc(r)} =
∅ and {lW⟨w′′⟩ ∈ π3 | loc(w′′) = loc(r) ∧ t(w′′) = t(r)} = ∅. For the first,
such a w′ would imply (r, w′) ∈ rb ⊆ OB, which contradicts the ordering
with λr. For the second, such an w′′ would imply (r, w′′) ∈ rbi ⊆ IB, and
λr ≺π lW⟨w′′⟩ which similarly contradicts the ordering with λr.

91

• If w ∈ lW, t(w) = t(r), and B⟨w⟩ /∈ π3. From (w, r) ∈ rf i ⊆ IB, we
have λw = lW⟨w⟩ ≺π λr, i.e., π3 = π2 · λw · π1. We need to show that
{lW⟨w′⟩ ∈ π2 | loc(w′) = loc(r) ∧ t(w′) = t(r)} = ∅. Such a w′ would imply
(w,w′) ∈ po (from [lW]; po; [lW] ⊆ ippo ⊆ IB, and the execution graph forc-
ing either (w,w′) ∈ po or (w′, w) ∈ po), (w,w′) ∈ mo (from [lW]; po; [lW] ⊆
oppo ⊆ OB, and well-formedness conditions forcing either (w,w′) ∈ mo or
(w′, w) ∈ mo), and (r, w′) ∈ rbi ⊆ IB would contradicts the ordering with
λr.

• Else we have λw ∈ π3, with λw ∈ {B⟨w⟩, CAS⟨w, ⟩}. If w ∈ lW and t(w) =
t(r), this is the remaining subcase, else it comes from (w, r) ∈ rfe ⊆ OB.
Thus we have π3 = π2 · λw · π1, and we need to check two properties. First,
we check that
{B⟨w′⟩, CAS⟨w′, ⟩ ∈ π2 | loc(w′) = loc(r)} = ∅. It holds because such a w′

would again imply (r, w′) ∈ rb ⊆ OB and contradict the ordering with λr.

Second, we check that

{
w′
∣∣∣∣ lW⟨w′⟩ ∈ π3 ∧ B⟨w′⟩ /∈ π3 ∧
loc(w′) = loc(r) ∧ t(w′) = t(r)

}
= ∅. It holds

because such a w′ would again imply (w,w′) ∈ mo, (r, w′) ∈ rbi ⊆ IB and
contradict the ordering with λr.

• If λr = CAS⟨r, w⟩, we similarly check that wfrdCPU(r, w, π3) holds. The dif-
ference is that cases that previously contradicted (rbi ⊆ IB) now contradict
bufFlushOrd(π) that forces the buffer of t(r) to be empty when performing λr.

• If λr = nlR⟨r, w, , ⟩, we need to show wfrdNIC(r, w, π3).
• If w = initloc(w), then we need to check that {B⟨w′⟩, CAS⟨w′, ⟩ ∈ π3 | loc(w′) = loc(r)} =

∅. Such a w′ would imply (r, w′) ∈ rb ⊆ OB, which contradicts the ordering
with λr.

• Else we have λw ∈ π3, with λw ∈ {B⟨w⟩, CAS⟨w, ⟩}. This comes from
(w, r) ∈ rfe ⊆ OB. Thus we have π3 = π2 · λw · π1, and we need to check
that
{B⟨w′⟩, CAS⟨w′, ⟩ ∈ π2 | loc(w′) = loc(r)} = ∅. It holds because such a w′

would again imply (r, w′) ∈ rb ⊆ OB and contradict the ordering with λr.
• If λr = nrR⟨r, w, , ⟩, naF⟨r, w, , ⟩ or narR⟨r, w, , , ⟩, we similarly check that
wfrdNIC(r, w, π3) for the same reasons.

Thus we have wfrd(π).

Theorem 12. Let G be a well-formed consistent execution graph generated from
a program P. Let π be the path obtained from G by the process defined above. Then
there is M′, QP′ (such that forall t, n we have QP′(t)(n) = ⟨ε, ε, nEX∗⟩), and an
equivalent path π′ (producing the same outcome as π) such that P,M0,B0,A0,QP0, ε ⇒∗

(λt.skip),M′,B0,A0,QP
′, π′.

Proof. From above, we have wf(π). This shows that the program configuration
can perform the events described by the annotated labels of π. The remaining
part of the proof is simply to check that the command rewritings used when
deriving the execution graph from P (see Fig. 23) can be used as E transitions
in the annotated semantics for P, which follows from the definitions.

92

D.7 Operational Semantics and Annotated Semantics

We define forgetful functions from annotated configurations to operational con-
figurations. For memories, we replace the write event by the value written. For
labels within annotated configurations, we drop some arguments to recover the
data structure of the operational semantics.

[[·]]M : AMem → Mem

[[M]]M ≜ λx.vw(M(x))

[[·]]op : Eext ⇀

{
yn := xn, yn := v, ackp, x

n := yn, xn := v,
x := RCAS(yn, v, v′), x := RFAA(yn, v), cn, rfence(n)

}
[[lW(x, vw)]]op ≜ x := vw

[[nrW(y, vr)]]op ≜ y := vr

[[nlW(x, vw, n)]]op ≜ x := vw

[[nF(n)]]op ≜ rfence(n)

[[Put(y, x)]]op ≜ y := x

[[Get(x, y)]]op ≜ x := y

[[RCAS(z, x, v, v′)]]op ≜ z := RCAS(x, v, v′)

[[RFAA(z, x, v)]]op ≜ z := RFAA(x, v)

[[nlEX(n)]]op ≜ cn

[[nrEX(n)]]op ≜ ackp

[[F]]op is undefined

[[P(. . .)]]op is undefined

[[lR(. . .)]]op is undefined

[[CAS(. . .)]]op is undefined

[[nlR(. . .)]]op is undefined

[[nrR(. . .)]]op is undefined

[[naF(. . .)]]op is undefined

[[narR(. . .)]]op is undefined

[[narW(. . .)]]op is undefined

[[·]]opl : Eext ⇀

{
yn := xn, yn := v, xn := yn, xn := v,
x := RCAS(yn, v, v′), x := RFAA(yn, v), cn, rfence(n)

}

[[l]]opl =

{
cn if l = nrEX(n)

[[l]]op otherwise

The labels that cannot appear in a well-formed annotated configuration are
not mapped. For put operations, the operational semantics uses both (ackp)
and (cn) while the annotated semantics uses the label nrEX, so the mapping is
different for labels in wbL.

[[·]]op and [[·]]opl are extended to lists in an obvious way.

We then extend this to configurations as expected. We overload notations to
simplify the formulas.

For qp = ⟨pipe,wbR,wbL⟩ ∈ AQPair, we define [[qp]] ≜ ⟨[[pipe]]op, [[wbR]]op, [[wbL]]opl⟩.
For QP ∈ AQPMap, we define [[QP]] ≜ λt.λn.[[QP(t)(n)]].
For B ∈ ASBMap, we define [[B]] ≜ λt.[[B(t)]]op.

93

Theorem 13. For all P,P′ ∈ Prog, M,M′ ∈ AMem, B,B′ ∈ ASBMap, A,A′ ∈
RAMap, QP,QP′ ∈ AQPMap, π, π′ ∈ Path, if P,M,B,A,QP, π ⇒ P′,M′,B′,A′,QP′, π′

and wf(M,B,A,QP, π), then P, [[M]]M, [[B]],A, [[QP]] ⇒ P′, [[M′]]M, [[B′]],A′, [[QP′]].

Proof. By straightforward induction on ⇒.

Theorem 14. For all M ∈ AMem, M′′ ∈ Mem, B ∈ ASBMap, B′′ ∈ SBMap,
A,A′ ∈ RAMap, QP ∈ AQPMap, QP′′ ∈ QPMap, and π ∈ Path, if P, [[M]]M, [[B]],A, [[QP]] ⇒
P′,M′′,B′′,A′,QP′′ and wf(M,B,A,QP, π), then there exists M′ ∈ AMem, B′ ∈
ASBMap, QP′ ∈ AQPMap, and π′ ∈ Path such that [[M′]]M = M′′, [[B′]] = B′′,
[[QP′]] = QP′′, and P,M,B,A,QP, π ⇒ P′,M′,B′,A′,QP′, π′.

Proof. By straightforward induction on ⇒. In some cases, the reduction en-
forces a specific annotated label λ and we have π′ = λ · π; we then need
wf(M,B,A,QP, π) to check that λ is fresh enough for π.

Theorem 15 (Operational and Annotated Semantics Equivalence).
For all program P.

• [[M0]]M, [[B0]], A0, and [[QP0]] are the initialisation for the operational seman-
tics;

• If P,M0,B0,A0,QP0, ε ⇒∗ P′,M′,B′,A′,QP′, π′ then P, [[M0]]M, [[B0]],A0, [[QP0]] ⇒∗

P′, [[M′]]M, [[B′]],A′, [[QP′]]
• If P, [[M0]]M, [[B0]],A0, [[QP0]] ⇒∗ P′,M′′,B′′,A′,QP′′ then there exists M′ ∈
AMem, B′ ∈ ASBMap, QP′ ∈ AQPMap, and π′ ∈ Path such that [[M′]]M = M′′,
[[B′]] = B′′, [[QP′]] = QP′′, and P,M0,B0,A0,QP0, ε ⇒∗ P′,M′,B′,A′,QP′, π′.

Proof. The first point comes from unfolding the definitions. The other two are
proved by straightforward induction on ⇒∗ and using Theorems 13 and 14. The
condition wf(M,B,A,QP, π) is obtained by applying Theorem 8 when needed.

94

	Specifying and Verifying RDMA Synchronisation

